# DISCOVERY OF MECHANOSENSITIVE MICRORNA AND messenger Rna in mouse arterial endothelium and IN CULTURED ENDOTHELIAL CELLS 

## A Dissertation

Presented to
The Academic Faculty

## By

Chih-Wen Ni

In Partial Fulfillment
Of the Requirements for the Degree
Doctor of Philosophy in the
Wallace H. Coulter Department of Biomedical Engineering at the Georgia Institute of Technology and Emory University

Georgia Institute of Technology
August 2010

# DISCOVERY OF MECHANOSENSITIVE MICRORNA AND MESSENGER RNA IN MOUSE ARTERIAL ENDOTHELIUM AND IN CULTURED ENDOTHELIAL CELLS 

Approved by:

Dr. Hanjoong Jo, Chair Department of Biomedical Engineering School of Medicine, Division of Cardiology
Georgia Institute of Technology and Emory University

Dr. Kathy K. Griendling
School of Medicine, Division of Cardiology
Emory University
Dr. David G. Harrison
School of Medicine, Division of
Cardiology
Emory University

Dr. Larry V. McIntire Department of Biomedical Engineering Georgia Institute of Technology

Dr. W. Robert Taylor
Department of Biomedical Engineering Georgia Institute of Technology

For my family
Especially my grandfather
Kao, Chin-Yuan
1933-2010

## ACKNOWLEDGEMENTS

I would first like to thank my advisor, Dr. Hanjoong Jo, for giving me the opportunity to work in the Jo lab, guiding me the direction for the past five years, and supporting me like a family. I would also like to thank my thesis committee members, Drs. Kathy K. Griendling, David G. Harrison, Larry V. McIntire, and W. Robert Taylor for supporting this work and providing constructive and valuable comments. I am grateful to Johnafel Crowe and Deborah Martinson for offering their expertise in the core facilities, helping sort cells and assistance with confocal microscopy, as well as to the staff of the bioengineering and biomedical engineering departments, including Leita Young, Lisa Simmons, Sandra Wilson, Sally Gerrish and Chris Ruffin for their limitless help with financial and administrative matters. Furthermore, I would like to acknowledge Gregory Doho in the Emory biomarker center for all his assistance with the microarray study.

I have been privileged to work with the best team in the Jo lab. First I would like to acknowledge Deb Smith and Maria Aleman for providing me the training in animal work and their efficient running of the lab. I would also like to acknowledge our current lab manager, Dong Won Kang, for all his help in the lab. I am very appreciative to all previous lab members, Drs. Doug Nam, Won Jong Rhee, Seth Brodie, Kyung Hwa Chang, Manu Platt, Hannah Song, Hyuk Sang Kwon, Heonyong Park, and Michelle Sykes. Credit is also due to current members, Dr. Amir Rezvan, Noah Alberts-Grill, Dr. Dong Ju Son, Dr. Kiwhon Kwon, Dr. Wakako Takabe, Fanor Balderrama, and Dr. Chan Woo Kim. I would also like to thank Casey Holliday, Drs. Amy Mowbray, Sarah Tressel, and Mamta Patel for their assistance, support, and friendship. I am indebted to Haiwei Qiu for technical aid and scientific help. And lastly, I am especially grateful to Dr.

Randy Ankeny. Over the last five years, he has provided vast assistance in everything, and true friendship to last a lifetime.

Finally, I would like to thank my family, especially my parents and sisters for encouraging and supporting me in this endeavor. Special thank to my adorable little girl, Angel Ni for always giving me the most genuine smile whenever I felt frustrated. Importantly, I would not have been able to complete this venture without the infinite support of my wife, LiShan Hsu. I thank her for always being there as my best friend, my counselor, and my partner. The last but not the least, I extend my greatest appreciation to my recently deceased grandfather, Mr. Kao, Chin-Yuan for always having faith in me since I was a little boy.

## TABLE OF CONTENTS

Acknowledgements ..... iv
List of Tables ..... ix
List of Figures ..... x
List of Symbols and Abbreviations ..... xiii
Summary ..... xvi
Chapter 1: Introduction ..... 1
Atherosclerosis and inflammation ..... 1
Atherosclerosis and Hemodynamics ..... 3
Shear Stress and Endothelial Cell Biology ..... 4
microRNAs ..... 10
miRNAs and Angiogenesis ..... 11
miRNAs and Inflammation ..... 12
In Vitro Models of Shear Stress ..... 13
In Vivo Models of Shear Stress ..... 14
Mouse Aortic Endothelial Cell line ..... 16
References ..... 18
Chapter 2: Specific Aims ..... 30
Project Significance ..... 30
Project Objective ..... 31
Overall Hypothesis ..... 31
Specific Aim 1 ..... 32
Specific Aim 2 ..... 33
Specific Aim 3 ..... 34
References ..... 36
Chapter 3: Development of immortalized mouse aortic endothelial cell ..... 38 (iMAEC) lines
Summary ..... 38
Introduction ..... 39
Methods ..... 40
Results ..... 45
Discussion ..... 52
References ..... 55
Chapter 4: Development of a mouse model of partial carotid ligation ..... 59 which acutely induces disturbed flow and a method to isolate intimal endothelium RNA
Summary ..... 59
Introduction ..... 60
Methods ..... 63
Results ..... 67
Discussion ..... 75
References ..... 79
Chapter 5: Discovery of mechanosensitive genes using in vivo model ..... 83 of mouse carotid endothelium exposed to disturbed flow
Summary ..... 83
Introduction ..... 84
Methods ..... 86
Results ..... 90
Discussion ..... 102
References ..... 108
Chapter 6: Discovery of mechanosensitive microRNAs using in vivo ..... 113 model of mouse carotid endothelium exposed to disturbed flow
Summary ..... 113
Introduction ..... 114
Methods ..... 115
Results ..... 117
Discussion ..... 124
References ..... 126
Chapter 7: microRNA-663 upregulated by oscillatory shear stress ..... 129 plays a key role in inflammatory response in human umbilical cord endothelial cells
Summary ..... 129
Introduction ..... 130
Methods ..... 132
Results ..... 135
Discussion ..... 147
References ..... 151
Chapter 8: Discussions ..... 155
Limitations ..... 155
Future Directions ..... 159
Summary ..... 162
Conclusions ..... 166
References ..... 168
APPENDIX A: mRNA expression profiles in response to disturb flow in vivo ..... 171
APPENDIX B: miRNA expression profiles in response to disturb flow in vivo ..... 182
APPENDIX C: mRNA expression profiles in response to OS or LS in HUVEC ..... 195

## LIST OF TABLES

Table 5.1 Overrepresented Gene Ontology Categories regulated by flow- ..... 94disturbance in mouse carotid endothelium
Table 5.2 Flow-regulated involved in inflammation and cell growth and ..... 95
proliferation in mouse carotid endothelium
Table 5.3 Comparison of flow-sensitive genes found in vivo mouse carotid ..... 97 endothelium to cultured HUVEC
Table 5.4 Common mechanosensitive genes between 12hr and 48hr ..... 103
Table 6.1 miRNAs expression in mouse carotids differentially regulated by ..... 117 ligation
Table 6.2 Predicted mechanosensitive targets and miRNAs ..... 123
Table 7.1 Shear sensitive miRNAs ..... 135
Table 7.2 mRNAs regulated by miR-663 ..... 145
Table 7.3 Functional annotation for genes regulated by miR-663 under OS ..... 146 condition

## LIST OF FIGURES

Figure 1.1 Atherosclerosis is an inflammatory disease 2
Figure 1.2 Blood flow acts on the arterial wall via three hemodynamic forces 5
Figure 1.3 Mechanoresponses in endothelial cells exposed to different flow 8 patterns
Figure 1.4 miRNA biogenesis and function 11
Figure 1.5 Schematic of the cone-and-plate shear stress system 13

Figure 2.1 Overall Hypothesis 32
Figure 2.2 Experimental layout for Specific Aim 132
Figure 2.3 Experimental layout for Specific Aim 2 34
Figure 2.4 Experimental layout for Specific Aim 3 35

Figure 3.1 Scheme of mouse aortic endothelial cell isolation and 42 immortalization
Figure 3.2 Morphology of mouse aortic endothelial cells 46
Figure 3.3 Validation of knockout iMAEC lines 47
Figure 3.4 Characterization of iMAEC lines by Dil-Ac-LDL staining 48
Figure 3.5 Characterization of iMAEC lines by immunostaining against PECAM- 49
1, VE-Cadherin, von Willebrand factor, and smooth muscle cell $\alpha-$ actin
Figure 3.6 iMAEC-WT maintained endothelial phenotype in response to shear stress
Figure 3.7 VCAM-1 expression is elevated in iMAEC-eNOSKO while 51 superoxide production is diminished in iMAEC-p47KO

Figure 4.1 Scheme of partial carotid ligation 64
Figure 4.2 The echocardiograms of partial carotid ligation 67
Figure 4.3 Partial ligation reduces blood flow through the LCA, without 68 significantly raising flow in RCA
Figure 4.4 CFD study: Partial ligation results in low and oscillatory shear stress 69

Figure 4.5 Validation of the method of intimal RNA preparation
Figure 4.6 Partial ligation does not cause detectable accumulation of Cd11b+ leukocytes in lumen of LCA 2 days post-ligation in c57BI/6 mice
Figure 4.7 Partial ligation results in decreases in KLF2 and eNOS while 72 increasing BMP4, ICAM-1, and VCAM-1
Figure 4.8 Partial ligation increases ICAM-1 and VCAM-1 protein expression in 72 LCA
Figure 4.9 Partial ligation induces endothelial dysfunction 73
Figure 4.10 Partial ligation and high-fat diet rapidly induces atherosclerosis in 74 LCA of ApoE KO mice
Figure 4.11 Partial ligation and high-fat diet induces features of advanced
atherosclerosis in LCA $\quad 75$
Figure 5.1 Global gene expression profiles in response to disturbed flow in 90 mouse carotid artery endothelium in vivo
Figure 5.2 Validation of mechanosensitive genes by qPCR 93
$\begin{array}{lll}\text { Figure 5.3 Endothelial expression of KLF2, Dhh, and KLK10, but not Lmo4, } & 98 \\ \text { decreased during ex vivo tissue culture }\end{array}$
Figure 5.5 Validation of shear-sensitive mRNAs in iMAEC-WT by qPCR 99
Figure 5.6 Disturbed flow in LCA decreases protein expression of Jam2, while 100
upregulating Angpt2, BMP4, and Lmo4
Figure 5.7 Lmo4 is differentially expressed in mouse aortic arch and human 101 coronary artery

Figure 6.1 The expression of miRNAs in response to disturbed flow in mouse 118 carotid artery endothelium in vivo
Figure 6.2 Validation of mechanosensitive miRNAs by qPCR 119
Figure 6.3 Validation of mechanosensitive miRNAs by qPCR 120
Figure 6.4 Validation of mechanosensitive miRNAs in iMAEC-WT 121
Figure 6.5 Venn diagrams show the correlations between potential targets of 122 mechanosensitive miRNAS and mechanosensitive genes

Figure 7.1 Validation of shear-sensitive miRNAs by qRT-PCR 136
Figure 7.2 Inhibition of miR-663 by miR-663-LNA mediate OS-induced 138 monocyte adhesion to ECs without affecting endothelial apoptosis
Figure 7.3 Overexpression of miR-663 partially induced monocyte adhesion to 139 ECs without affecting endothelial apoptosis
Figure 7.4 miR -663 does not mediate OS-induced DNA fragmentation140

Figure 7.5 miR-663-LNA inhibits ICAM-1 but not VCAM-1 expression

Figure 7.6 miR-663 does not mediate TNF- $\alpha$-induced monocyte adhesion

# Figure 7.7 Gene expression profiles and qPCR validation between LS and OS <br> 144 either treated with control miR-LNA or miR-663-LNA 

Figure 8.1 Experimental procedure of RNAi delivery to carotid artery 160
Figure 8.2 Delivery of siRNA to carotid endothelium 161

## LIST OF SYMBOLS AND ABBREVIATIONS

3' UTR
$\alpha$-SMA
Angpt2
ApoE
BMP
BAEC
CFD
DAVID
DHE
Dhh
Dil-Ac-LDL
DMEM
EC
ECGS
EMT
eNOS
EGM2-MV
FACS
FBS
FDR
GC
HAEC

3' untranslated region
Smooth muscle cell $\alpha$-actin
angiopoietin-2
Apolipoprotein E
Bone morphogenic protein bovine aortic endothelial cells computational fluid dynamics

Database for Annotation, Visualization and Integrated Discovery
Dihydroethidium
desert hedgehog
1,1'-dioctadecyl-3,3,3,3'-tetramethyl-indocarbocyanine perchlorate
Dulbecco's Modified Eagle Medium
Endothelial Cell
Endothelial cell growth supplement
Epithelial-to-mesenchymal-transition
Endothelial nitric oxide synthase
Endothelial growth medium 2- microvascular fluorescence-activated cell sorting
fetal bovine serum
false discovery rate
greater curvature
human aortic endothelial cells

HBSS
HCAEC
HUVEC
ICAM1
IL-6
iMAEC
IPA
Jam2
KLF2
KLF4
KIk10

LC
LCA
LDL
LDLR
LNA
Lmo4
LS
NO
MAEC
MCP1
miRNA
OS
PAEC
PBS

Hank's buffered salt solution
human coronary artery endothelial cells human umbilical vein cord endothelial cells Inter-cellular adhesion molecule 1 Interleukin -6 Immortalized mouse aortic endothelial cells Ingenuity Pathway Analysis Junctional adhesion molecule 2

Kruppel-like factor-2
Kruppel-like factor-4
Kallikrein-10
lesser curvature Left common carotid artery

Low density lipoprotein Low density lipoprotein receptor Locked Nucleic Acid LIM-only protein 4 Laminar Shear Nitric oxide
mouse aortic endothelial cells Monocyte chemoattractant protein 1 microRNA

Oscillatory Shear pig aortic endothelial cells Phosphate buffered saline

PDGF

PECAM-1

PmT
qPCR

RASM
RCA
RISC
ROS
SAM
SDS-PAGE
SNP

TA
THP-1
TNF $\alpha$
VCAM1
vWF
WSS

WT
platelet-derived growth factor
platelet endothelial cell adhesion molecule-1
Polymer middle $T$ antigen
Quantitative real time polymer chain reaction rat aortic smooth muscle cells

Right common carotid artery RNA-induced silencing complex

Reactive oxygen species Significance Analysis of Microarrays sodium dodecyl sulfate polyacrylamide gel electrophoresis sodium nitroprusside thoracic aorta

Human acute monocytic leukemia cell line Tumor necrosis factor- $\alpha$ Vascular cell adhesion molecule 1 von Willebrand facot wall shear stress wildtype

## SUMMARY

Cardiovascular disease is the leading cause of death among developed countries and is rapidly becoming the major cause of death in the developing world. Atherosclerosis is a major contributor to cardiovascular disease and accounts for an estimated one-third of deaths worldwide. In an effort to develop effective treatments for this pervasive pathology, research is now focused on the mechanisms of atherogenesis. In order to address the hemodynamic components of disease pathogenesis, researchers have focused on mechanotransduction of flow-dependent shear stress in the vascular endothelium as a source of novel pathological mechanisms. Understanding how unidirectional, laminar blood flow protects vessels from atherogenesis, while disturbed, oscillatory blood flow promotes it, stands to provide enormous insight into disease pathogenesis and may provide powerful, specific new therapies for cardiovascular disease intervention.

The overall objective of this dissertation was to determine which microRNAs and mRNAs are regulated by different flow conditions in vascular endothelial cells in vitro and in mouse carotid artery endothelium in vivo, and to identify which miRNAs mediate flowdependent vascular inflammation. These results allow us to identify novel targets either for therapeutic intervention or for early clinical detection of atherosclerosis. The overall hypothesis of this project was that oscillatory shear (OS) and laminar shear (LS) stress differentially alter the expression of mechanosensitive miRNAs each capable of regulating complex networks of gene expression, which in turn leads to inflammation in endothelial cells. This hypothesis was tested according to three specific aims using both
in vitro and in vivo approaches via high throughput microarray analyses and functional validation of specific targets by PCR.

To achieve these specific aims, our lab first developed a mouse model which changes the flow pattern in the left common carotid artery by ligating three of the four caudal branches of the LCA - left external, left internal, and occipital arteries. We characterized the low and oscillatory shear stress acutely induced by the partial carotid ligation procedure which induces accelerated endothelial dysfunction in one week and advanced atherosclerotic plaques by 2 weeks in ApoE knockout mice fed a high fat diet. Using this model, I developed a simple method to isolate endothelial cell RNA from the partially ligated left common carotid as well as the contralateral right common carotid. This method was then fine-tuned to provide total RNA samples in sufficient quantity with little to no appreciable contamination from cells populating the underlying medial and adventitial layers of the artery. In addition, the time points (12hr and 48hr post-ligation) I selected for RNA samples collection are free of the infiltration of immune cells into intimal layer when exposed to disturbed flow. In addition, I also developed a method to generate iMAEC line for use in vitro for validation purpose. The methods used to develop iMAEC lines described in this dissertation can be applied to generate additional MAEC lines, using various knockout mouse lines, to provide a critical tool to investigate the vascular biology and pathobiology.

To investigate the mRNA expression profiles in vivo, l carried out genome-wide microarray assays using endothelial RNAs isolated from the flow-disturbed left and contralateral right common carotid arteries (LCA and RCA) in wildtype C57BL/6 mice. I found that 62 and 523 genes significantly changed in flow-disturbed LCA endothelium compared to the RCA by 12 hr and 48hr post-ligation respectively. The array results for别

44 out of 46 genes were validated by qPCR, including well-known shear-responsive genes, KIf2, eNOS, and BMP4, as well as numerous novel mechanosensitive genes such as Klk10, Dhh, Jam2 and Lmo4. Lmo4 protein was specifically expressed in the flow disturbed mouse aortic arch endothelium and in human coronary endothelium in an asymmetric pattern. Comparison of in vivo, ex vivo, and in vitro endothelial gene expression patterns suggests that many mechanosensitive genes found in vivo appear to have been significantly dysregulated during culture. Gene ontology analyses revealed that disturbed flow induced cell proliferation and morphology by 12hr, followed by inflammatory and immune responses by 48 hr .

To provide further insight into the possible mechanisms of observed mechanosensitive gene changes I performed microarrays looking at miRNA expression profiles using RNA samples isolated as described above. I found that 27 and 18 miRNAs were significantly either up- or down-regulated, respectively, in flow-disturbed LCA endothelium compared to the RCA 48 hours post-ligation. However, only 4 miRNAs showed significant differences between LCA and RCA as of 12 hours post-ligation. The array results were also validated by qPCR confirming several mechanosensitive miRNAs such as miR-23b, miR-29b, miR-30c, and miR-712, which have not been reported previously. Further analyses between mechanosensitive miRNAs and mRNAs reveal approximately 10 to $15 \%$ (25/295, and 31/228) of mechanosensitive mRNAs found to be potential targets of shear-sensitive miRNAs based on the sequence complementary prediction by TargetScan. This also suggests the significance of these mechanosensitive miRNAs and mRNAs identified in this dissertation and these targets could play an important role involving in the mechanisms underling the effect of shear stress on cardiovascular disease.

To further study the functional importance of mechanosensitive miRNAs, I examined the miRNAs expression profiles in cultured HUVEC exposed to OS or LS for 24 hr . Given the difference between in vitro and in vivo system, the new data set were obtained and detailed functional validation were performed. After validation by PCR, we identified 10 OS-sensitive miRNAs. Of those, the most significant OS-induced miRNA, miR-663, was selected for determining its functional importance. miR-663 plays a specific role in endothelial inflammatory response, but not in apoptosis, in an ICAM-1 dependent manner. In order to identify potential target genes of miR663, we carried out an additional genome-wide DNA microarray, which uncovered 35 potential miR-663 targets, including a network of inflammatory genes and transcription factors such as KLF4, ATF3, and FOSB. Since these transcriptional factors have been known to serve as master regulators in several biological functions including inflammation, these results suggest that miR-663 is a shear-sensitive miRNA, regulating expression of many genes including the transcription factors, which in turn induce inflammatory response in ECs. Collectively, OS significantly altered the gene expression profiles including miRNA and mRNA compared to LS. These mechanosensitive genes regulated by miRNAs seem to involve in OS induced EC inflammation in the earliest stage of atherosclerosis development. In particular, miR-663, an OS-induced miRNA, is shown to mediate cellular inflammation by regulating a network of genes further support the notion that flow sensitive miRNAs and mRNA play important roles in disturbed flow induced cardiovascular diseases.

Overall, revealing the profiles of miRNAs and mRNAs regulated by hemodynamic flow provides a better understanding in vascular diseases and provide potential target for developing effective preventative therapeutic approaches in cardiovascular diseases.

## CHAPTER 1

## INTRODUCTION

Atherosclerosis is an inflammatory disease characterized by the development of lipidfilled plaques in arterial vessels ${ }^{1}$. It has been correlated to the dysfunction of endothelium exposed to disturbed flow in the defined regions of the vasculature ${ }^{3-4}$. In straight vessels, endothelial cells are exposed to high, unidirectional laminar shear stress (LS) and maintain an anti-atherogenic phenotype. In contrast, unstable shear flow including low and oscillatory shear stress (OS) occurs in curves and bifurcations of the arteries known as plaque-prone areas. Given that the endothelial cells respond differently to LS and OS, the cascade of altered gene expression induced by the shear response is likely modulated by different mechanisms at transcriptional or posttranscriptional level. Growing evidence indicates that microRNAs are a new category of molecules that regulate gene expression in a post-transcriptional manner and play diverse roles in fundamental biological processes, such as cell proliferation, migration, and inflammation ${ }^{5-7}$. Thus, this dissertation will address the protective and pathological effects of arterial hemodynamics with respect to microRNA and gene regulation using in vitro (cell culture) and in vivo (mouse model) experimental systems. In particular, we will present the discovery of novel shear-sensitive genes including microRNAs and mRNAs in endothelial cells. The focus of these genes will concentrate on the functions related to inflammation which leads to atherosclerosis subsequently.

## Atherosclerosis and inflammation

Atherosclerotic cardiovascular disease is one of the leading causes of death in the western world ${ }^{8}$. In the United States alone, nearly 2400 people die of cardiovascular
disease each day, an average of 1 death every 36 seconds $^{8}$. The increased prevalence of cardiovascular disease suggests a need for further research exploring the mechanisms of disease pathogenesis and therapies that address early detection and prevention.


Figure 1.1 Atherosclerosis is an inflammatory disease. Endothelium dysfunction (A) results in fatty streak formation (B), advanced plaque development (C), and rupture (D). Figure reprinted with permission⒈ Copyright © 1999 Massachusetts Medical Society.

Atherosclerosis is an inflammatory disease of the large arteries and is characterized by the development of lipid-filled plaques that obstruct the vessel lumen (Figure. 1.1) ${ }^{1}$. In the vasculature, atherosclerosis is initiated by a "response-to-injury." This causes functional changes in endothelial cells known as endothelial dysfunction ${ }^{9}$. Globally,
endothelial dysfunction can be induced by hypercholesterolemia, smoking, hypertension, diabetes mellitus, genetic diseases, and elevated plasma homocysteine levels ${ }^{9}$.

The endothelial dysfunction that results from one or a combination of these risk factors or "injuries" leads to compensatory responses that alter the normal homeostatic properties of the endothelium. The different forms of injury elevate the expression of inflammatory adhesion molecules, secrete cytokines and growth factors, and increase endothelial permeability to lipoproteins and other plasma constituents ${ }^{1}$. The first stage of atherosclerosis is marked by the development of deposits of oxidized cholesterol and macrophages known as fatty streaks. As the inflammatory response continues, endothelial cells express more adhesion molecules, including VCAM-1 and MCP-1, which recruit more circulating monocytes. Monocytes differentiate into macrophages, digest oxidized LDL and become foam cells. Foam cells burst and die releasing modified lipids, DNA, and other inflammatory molecules, further propagating the inflammatory process in the developing lesion. Smooth muscle cells also proliferate and migrate from the medial layer into the intima in response to cytokines secreted by damaged endothelial cells. This causes the formation of a fibrous capsule covering the fatty streak ${ }^{1,9}$. Continued inflammatory cell infiltration can cause the plaque to become unstable and rupture, leading to thrombosis and embolism resulting in heart attack or stroke.

## Atherosclerosis and Hemodynamics

Despite the global nature of many risk factors, it has been established that pockets of sustained inflammation and atherosclerosis develop in hemodynamically-defined regions of the vasculature ${ }^{3-4}$. Development of atherosclerotic lesions is largely restricted to bifurcations or sharp curves in the arterial tree. Vascular regions such as the carotid
bifurcation, the coronary vessels, the lesser curvature of the ascending aorta, and the abdominal aorta are clinically prone to plaque formation ${ }^{3-4}$. Studies have shown that these areas of the vasculature coincide with regions of disturbed blood flow where endothelial cells are exposed to low and oscillatory shear stress (OS $)^{3,10}$. In contrast, straight vessels exposed to high, unidirectional laminar shear stress (LS) resist both spontaneous clinical disease and experimentally induced disease ${ }^{11}$. These local mechanical forces have been correlated to the action of the exposed endothelium. In addition, a developing atherosclerotic lesion can itself alter the local shear stress pattern on the endothelium. An increased velocity of flow through the narrowed luminal space can create disturbed flow in the region immediately downstream to a substantial stenosis. The disturbed flow created by lesion has similar characteristics to those seen in prelesional sites, and may contribute to the growth of the lesion over time ${ }^{12}$. Furthermore, vein grafts transferred to the high pressure coronary artery circulation frequently develop stenoses, particularly at the artery-vein attachment sites ${ }^{13}$. In this local area, complex vascular geometry can contribute to flow separation and could be responsible for endothelial dysfunction ${ }^{12-13}$. Collectively, these phenomena suggest that blood flow and the forces it imparts on vessels, directly influence the local inflammatory environment of the vascular wall, thus playing a critical role in cellular function and vascular wall physiology during health and disease.

## Shear Stress and Endothelial Cell Biology

## Shear stress

Endothelial cells lining the vascular wall are under the constant influence of hemodynamic forces generated by blood flow from the heart. These forces are described in terms of flow-induced shear stress and pressure-induced cyclic strain $\left(\right.$ Figure. 1.2) ${ }^{14}$.


Figure 1.2 Blood flow acts on the arterial wall via three hemodynamic forces. Figure reprinted with permission ${ }^{14}$. Copyright © 1997 American Chemical Society and American Institute of Chemical Engineers.

The frictional wall shear stress acting tangentially as a result of blood flow over the vessel wall ${ }^{14}$ has been identified as the critical force mediating flow-dependent atherosusceptibility. Disturbed, or oscillatory blood flow at vessel branches correlates with low, bidirectional shear stress, yielding atheroprone vessel regions, while unidirectional laminar flow results in high unidirectional shear stress, which is atheroprotective ${ }^{10,15-16}$.

## Mechanotransduction

It is well established that endothelial cells experience dramatic morphological changes when exposed to different flow patterns. Endothelial cells are known to align and elongate parallel to the plane of unidirectional laminar blood flow. This alignment disappears under oscillatory or static flow conditions with cells orienting randomly or assuming a distinctive polygonal morphology. ${ }^{17}$ The morphological sensitivity of
endothelial cells to different flow conditions is mediated by cell surface "mechanoreceptors". Shear stress mechanotransduction in the endothelium requires several sequential steps including: 1) physical deformation of the cell surface, 2) intracellular transmission of stress, 3) conversion of mechanical force to chemical activity, and 4) downstream biochemical signaling with feedback ${ }^{12,}{ }^{18}$. The mechanotransduction is through these mechanoreceptors either by the direct transmission of shear forces to intracellular organelles via networks of cytoskeletal filaments, junctional complexes, and focal adhesions, or by activating biomolecular pathways that lead to altered gene expression ${ }^{19}$. As shear stress acts at the luminal cell surface, local membrane structures can participate in mechanotransduction. Examples include activation of ion channels and G proteins, and changes in phospholipid metabolism and membrane fluidity ${ }^{12,}{ }^{18}$. This combination of biochemical and biomechanical signal transduction leads to both outside-in and inside-out signaling phenomena. For instance, the integrin can activate intracellular signaling pathway through conformational change by shear stress (outside-in) or can receive signals from other shear regulated-receptors activating intracellular signaling pathways that impingent on integrin cytoplasmic domains and make extracellular domain competent for ligand binding (inside-out) ${ }^{19-20}$. The diversity of endothelial functions is reflected in the variety of mechanotransduction mechanisms.

## Microarray study in shear stress regulated EC gene expression

The differential mechanisms by which disturbed and stable flow promotes and inhibits atherogenesis, respectively, have been a subject of intense study, mostly using cultured endothelial cells ${ }^{21-24}$. To define molecular mechanisms responsible for these changes, investigators have carried out DNA microarray studies using endothelial cells ${ }^{25-33}$ and have subsequently identified numerous shear sensitive genes such as kruppel-like factor

2 and 4 (KIf2, Klf4), endothelial nitric oxide synthase (eNOS), vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), bone morphogenic protein 4 (BMP-4), cathepsins and angiopoietin-2 (Angpt2) ${ }^{27,30,34-42}$ Functional studies based on these shear-sensitive genes and their protein products have revealed the critical roles that they play in regulation of inflammation, thrombosis, vascular remodeling, angiogenesis and arteriogenesis ${ }^{27,35-38,42-43}$. While these in vitro studies have provided critical insights regarding shear sensitive mechanisms in cultured endothelial cells using modeled flow conditions, it cannot be assumed whether identical mechanosensitive genes and pathways are involved in vivo regulating flow-dependent vascular responses and diseases. In addition, given the exquisite sensitivity of endothelial gene expression to various flow conditions, it is quite plausible that many genes could be dysregulated (lost, overexpressed or modified) during cell culture which is carried out under no-flow condition for extended period. Recently, Davies and colleagues have conducted in vivo DNA microarray studies using endothelial RNAs obtained directly from the flow-disturbed inner aortic arch and undisturbed flow region of normal pig aorta ${ }^{44-46}$. Since pig aortic arch is exposed to chronic changes including flowdisturbance for many months from birth, the observed gene profile changes may be complex and may not be solely attributed to flow-disturbance. Therefore, it is critical to study how arterial endothelium responds to acute flow disturbance in vivo. However, the adequate pathophysiological animal models enabling acute and reproducible modulation of flow conditions that rapidly lead to atherosclerosis have been lacking.

## Signal transduction and gene regulation

Steady laminar shear stress promotes the release of factors from endothelial cells that inhibit coagulation, leukocyte transmigration, and smooth muscle cell proliferation, while
simultaneously promoting endothelial cell survival (Figure 1.3) ${ }^{2}$.


Figure 1.3 Mechanoresponses in endothelial cells exposed to different flow patterns. Figure reprinted with permission². Copyright © 1998 American Heart Association, Inc.

For instance, vasoactive molecules, including nitric oxide (NO) and prostacyclin, promote vessel dilation and increased blood flow ${ }^{2,15,47}$. It is well known that exposure of endothelial cells to laminar shear stress stimulates the production of NO from eNOS in cultured cells ${ }^{48-53}$. Studies have shown that laminar shear stress stimulates serine/threonine kinase Akt phosphorylation on serine-473 in a vascular endothelial growth factor (VEGF) receptor dependent manner. Activation of Akt in turn phosphorylates eNOS at Ser-1177, leading to eNOS activation and NO production ${ }^{50,54-}$


#### Abstract

${ }^{55}$. Bioavailable NO production by laminar shear stress inhibits several key early events in the development of atherosclerosis. However, low shear stress and flow reversal induce a pro-inflammatory profile of gene and protein expression, contributing to the early development of atherosclerosis ${ }^{2}$. NO inhibits the expression of monocyte chemoattractant peptide-1 (MCP-1) and monocyte adhesion induced by cytokines and oxidized LDL, reduces vascular cell adhesion molecule-1 (VCAM-1) expression, prevents propagation of lipid oxidation, inhibits vascular smooth muscle cell proliferation, decreases platelet aggregation, and prevents cell death ${ }^{56-60}$. In contrast, the expression of VCAM-1, ICAM-1, and MCP-1 induced by oscillatory shear stress promotes monocyte adhesion ${ }^{2,47}$ which is a early marker for cellular inflammation. Endothelial cells exposed to disturbed flow also secrete pro-inflammatory, vasoactive factors such as plateletderived growth factor (PDGF), endothelin-1, and angiotensin II, which encourages vasoconstriction, vascular smooth muscle cell proliferation, and reactive oxygen species production ${ }^{2,47,61}$.


Given the range and scope of endothelial responses to LS and OS, it is likely that shear-induced response programs are mediated by several different mechanisms. Classical signal transduction and mechanotransduction of shear-induced signals can explain certain specific changes in gene expression and cell morphology, but microarray studies have noted hundreds to thousands of changes in gene expression between endothelial cells exposed to different shear conditions ${ }^{26,28-29}$. In order to achieve such large-magnitude changes in gene expression, master regulator switches, namely microRNAs, which can regulate the expression levels of hundreds of genes each, must be directly influenced by shear-dependent stimuli.

## microRNAs

microRNAs (miRNAs) are a large class of evolutionarily conserved, noncoding, small RNAs, typically 18 to 22 nucleotides in length that primarily function post-transcriptionally by interacting with the $3^{\prime}$ untranslated region ( $3^{\prime}$ UTR) of specific target mRNAs in a sequence-specific manner ${ }^{62}$. More than 800 miRNAs are encoded in the human genome, and each is thought to target multiple mRNAs (over hundreds), resulting in mRNA degradation or translational inhibition. miRNAs are transcribed by RNA polymerase II and can be derived from individual miRNA genes, from introns of proteincoding genes, or from polycistronic transcripts that often encode multiple, closely related miRNAs ${ }^{63}$ (Figure 1.4). Pri-miRNAs are processed in the nucleus by the RNase Drosha into 70-100 nucleotides, hairpin-shaped precursors, called pre-miRNAs. Following transport to the cytoplasm, the pre-miRNA is further processed by the RNA endonuclease Dicer to produce a double-stranded miRNA. The fully processed miRNA duplex is then incorporated into a multicomponent protein complex known as RNAinduced silencing complex (RISC) ${ }^{64-66}$. During this process, one strand of the miRNA duplex is selected as a mature miRNA while the other strand, known as miRNA*, is in general rapidly removed and degraded. As part of the RISC, miRNAs negatively regulate gene expression through translational repression and mRNA cleavage, which depend on the extent of complementarity between the miRNA and its mRNA target and other criteria that are still being defined (Figure 1.4). Despite advances in miRNA discovery, the role of miRNAs in various physiological and pathophysiological processes is just emerging. In endothelial cells, it has become clear that miRNAs play diverse roles in fundamental biological processes, such as cell proliferation, migration, and inflammation ${ }^{67-68}$. Furthermore, miRNAs are considered as critical regulators in cardiovascular development and different aspects of the angiogenic process.


Figure 1.4 miRNA biogenesis and function. Figure reprinted with permission ${ }^{63}$. Copyright © 2007, American Society for Clinical Investigation.

## miRNAs and Angiogenesis

Several studies have been aimed at elucidating the role of individual miRNAs in the regulation of angiogenesis. Specifically in endothelial cells, let-7f and miR-27b have been shown to exert pro-angiogenic effects as evidenced by the blockade of in vitro angiogenesis with 2'-O-methyl oligonucleotide antisenses specific to let-7f and miR27b. ${ }^{69}$. Their gene targets in endothelial cells, however, have yet to be identified. Overexpression of miR-221/222 in HUVEC inhibits tube formation, migration, and wound healing in response to stem cell factor ${ }^{70}$, suggesting that it exerts an anti-angiogenic effect. In hematopoietic progenitor cells, miR221/222 was also shown to control the growth of erythropoietic and erythroleukeic cells through the regulation of c-kit expression at the translational level ${ }^{71}$. miR-221 and miR-222 overexpression also
indirectly reduces the expression of endothelial nitric oxide synthase (eNOS) in dicer siRNA-transfected cells ${ }^{72}$. Nitric oxide (NO) is not only a key regulator for endothelial cell growth, migration, vascular remodeling, and angiogenesis; its impaired bioavailability is also a hallmark of patients with atherosclerosis and ischemic cardiomyopathy. miRNAs targeting eNOS might not only regulate angiogenesis as it has been shown for miR-221/222, but may also be involved in vasculogenesis.

## miRNAs and Inflammation.

The role of miRNAs in vascular inflammation, particularly in leukocyte activation and infiltration into the vascular wall, has been recently reported. The first evidence that miRNAs control vascular inflammation identified miR-126 as an inhibitor of vascular cell adhesion molecule 1 (VCAM-1) expression, which mediates leukocyte adhesion to endothelial cells ${ }^{73}$. Thus, decreasing miR-126 in endothelial cells increases TNFstimulated VCAM-1 expression, enhancing leukocyte adhesion to endothelial cells. Recently, it has been shown that miR-21 is a regulator of neointimal lesion formation ${ }^{74}$. Downregulation of aberrantly expressed miR-21 decreased neointimal lesion formation in rat carotid artery following angioplasty. Although only a few studies have directly assessed the role of miRNAs in vascular inflammation and diseases, several studies have looked at the contribution of miRNAs in the differentiation and function of hematopoietic cells involved in inflammation. While it is now clear that inflammation is a key event in atherosclerosis that is at least spatially linked to arterial regions of disturbed flow regions, it is not known whether flow conditions regulate miRNA expression profiles in the vessel wall and the subsequent pro-inflammatory and atherogenic responses that follow. This is the major issue that will be addressed in this dissertation.

## In Vitro Models of Shear Stress

To investigate how local hemodynamic conditions regulate endothelial cell function in vivo, several in vitro systems have been developed to examine endothelial function and structure under conditions simulating certain aspects of in vivo conditions ${ }^{75}$. Devices such as the parallel plate flow chamber, vertical step flow chamber, cone-and-plate viscometer, modified cone-and-plate shear apparatus, and microfluidics device have allowed for controlled experiments on cultured endothelial cells ${ }^{17,33,35,75-76}$. Cone-andplate and parallel plate flow chamber are two of the most popular in vitro shear devices. Here, we will discuss each model. In the parallel plate system, cells are cultured on glass slides and positioned within a rectangular flow chamber. A roller pump is used to circulate medium through the chamber to provide uniform levels of shear stress. The dimensions of the chamber and the pressure drop across it dictate the fluid flow rate and result in specific shear stress conditions ${ }^{47}$. In the cone-and-plate shear system, a Teflon cone is used to generate shear stress. The cone is placed in a circular culture dish containing adherent endothelial cells and medium.


Figure 1.5 Schematic of the cone-and-plate shear stress system

As illustrated in Figure 1.5, the angle of the cone is $0.5^{\circ}$. Rotation of the cone forces the fluid between the cone and plate to flow azimuthally and produce a shear stress on the stationary endothelial cell monolayer ${ }^{77}$. The Navier-Stokes equations can be used to accurately calculate the magnitude and direction of this shear stress and to determine the limits to which this system can produce laminar arterial flow profiles ${ }^{77}$. When compared to the parallel plate system, the cone-and-plate shear apparatus exhibits several advantages and disadvantages. For example, the low volume of media used in the cone-and-plate viscometer may permit secreted growth factors and cytokines to accumulate over time and produce non-physiological effects on cultured cells. In addition, this system results in a gradient of shear stress, and cells at the center of the culture dish, near the cone apex, may experience lower shear stress than those at the perimeter. Alternatively, the cone-and-plate viscometer can expose a greater number of cells to shear stress when compared to the parallel plate system using small glass coverslips. This is critical for RNA and protein analyses of cells. The system can also be used to simulate reversal of flow by rotating the cone back and forth. Although secondary flow can occur at high rotational speeds, this is generally negligible to achieve physiologically relevant shear stresses ${ }^{78}$. As a result the cone-and-plate viscometer can expose cultured endothelial cells to both atherogenic oscillatory shear stress (OS) and atheroprotective unidirectional laminar shear stress (LS).

## In Vivo Models of Shear Stress

Atherosclerosis is a local disease, occurring mostly in areas of low and oscillatory shear stress, key features of disturbed flow. Many researchers have focused on studying the areas of naturally occurring disturbed flow in animal models while others have attempted to create areas of disturbed flow to mimic the shear stress profile experienced in areas of naturally occurring atherosclerosis. With respect to animal models, shear stress levels
not only vary in different regions of the arterial tree within individuals of a species, they also vary greatly between different species, with higher shear stress values generally seen in smaller animals ${ }^{79}$. Change in vessel diameter in response to shear stress alterations is not only species- but also strain-dependent ${ }^{80}$.

For many years, atherosclerosis research in animal models was performed mostly by studying spontaneous atherosclerosis in animals susceptible to atheroma formation ${ }^{81}$. A disturbed pattern of flow can be found in many different areas of the arterial tree including, but not limited to, the aortic sinus, the lesser curvature of the aortic arch, the root of the innominate artery, the carotid bifurcation, the branching of the celiac artery from the abdominal aorta and regions in the coronary system ${ }^{82-91}$. The predilection of these sites to develop spontaneous lesions experimentally is what brought the relationship of mechanical forces and atherosclerosis to the attention of investigators. These areas can be used to study the effects of disturbed flow on endothelial biology including gene and protein expression. The widely used mouse model is to examine the plaque development in aortic arch or aortic sinus using $\mathrm{ApoE}^{-/}$or $\mathrm{LDLR}^{-/-}$mice fed a high cholesterol diet for several months ${ }^{92}$. The major advantage of using these areas of naturally occurring disturbed flow is their pathophysiological relevance, as these are atheroprone regions in humans as well. These areas are chronically exposed to disturbed flow patterns, making them appropriate models for long term atheroma formation. However, naturally occurring regions of disturbed flow cannot adequately model the effects of acute changes in shear stress in vivo.

Our lab recently characterized a mouse model in which disturbed flow is acutely produced within the common carotid artery by ligating the internal carotid, occipital, and external carotid arteries distal to the branching of the superior thyroid artery, restricting
common carotid blood flow solely to the superior thyroid artery. This results in a significant reduction in blood flow within the common carotid that, importantly, is accompanied by flow reversal during diastole giving rise to a combined low and oscillatory shear stress pattern characteristic of naturally occurring areas of disturbed flow in the arterial tree ${ }^{93}$. In this dissertation, the mouse partial carotid ligation model will be used to discover novel mechanosensitive genes and miRNAs. A detailed description of this mouse model will be presented in Chapter 4.

## Mouse Aortic Endothelial Cell line

In vitro systems using cultured endothelial cells serve as important tools to study vascular physiology and disease pathology. Endothelial cells from different origins and species have been successfully cultured for several decades ${ }^{94-95}$. Popular human primary endothelial cell lines include human umbilical vein cord endothelial cells (HUVECs) $)^{96}$, human aortic endothelial cells (HAECs) ${ }^{97}$, human coronary artery endothelial cells $(\mathrm{HCAEC})^{98}$, and microvascular endothelial cells ${ }^{99-100}$. In addition, endothelial cell lines have also been developed from other species, such as bovine aortic endothelial cells (BAECs) ${ }^{101}$, pig aortic endothelial cells (PAECs) ${ }^{102}$ and endothelial cells from the mouse ${ }^{103-117}$. In particular, murine ECs allow the use of the powerful tool of mouse genetics in identifying genetic and molecular mechanisms in endothelial cell function. While several studies have developed different methods for the isolation of primary mouse aortic endothelial cells (MAECs) ${ }^{107-108,112-117}$, the isolation and maintenance of primary MAECs still remain a formidable challenge: they are time-, cost-, and labor-intensive. The main obstacle to primary MAEC culture is the almost prohibitively low number of cells yielded by a single animal, which is compounded by the limited proliferative potential of these cells. Contamination of cultures by other cell types that out-proliferate MAECs is common. Moreover, it seems that MAECs have a tendency
to trans-differentiate to mesenchymal cells during culture ${ }^{118-119}$. As such, the development of pure and stable immortalized MAEC lines presents significant technical challenges, in spite of their obvious promise as an in vitro model system. In this dissertation, the method for generating immortalized MAEC lines will be described in Chapter 3 and iMAEC lines will be used to validate the expression of miRNAs and mRNA based on the results obtained in vivo.

## References

1. Ross R. Atherosclerosis--an inflammatory disease. N Engl J Med. 1999;340:115126
2. Traub O, Berk BC. Laminar shear stress: Mechanisms by which endothelial cells transduce an atheroprotective force. Arterioscler Thromb Vasc Biol. 1998;18:677685
3. Ku DN, Giddens DP, Zarins CK, Glagov S. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis. 1985;5:293-302
4. VanderLaan PA, Reardon CA, Getz GS. Site specificity of atherosclerosis: Siteselective responses to atherosclerotic modulators. Arterioscler Thromb Vasc Biol. 2004;24:12-22
5. Chen CZ, Li L, Lodish HF, Bartel DP. Micrornas modulate hematopoietic lineage differentiation. Science. 2004;303:83-86
6. Xu P, Guo M, Hay BA. Micrornas and the regulation of cell death. Trends Genet. 2004;20:617-624
7. Mendell JT. Miriad roles for the mir-17-92 cluster in development and disease. Cell. 2008;133:217-222
8. Association AH. Heart disease and stroke statistics - 2008 update. 2008
9. Ross R. The pathogenesis of atherosclerosis: A perspective for the 1990s.

Nature. 1993;362:801-809
10. Zarins CK, Giddens DP, Bharadvaj BK, Sottiurai VS, Mabon RF, Glagov S. Carotid bifurcation atherosclerosis. Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress. Circ Res. 1983;53:502-514
11. Davies PF, Shi C, Depaola N, Helmke BP, Polacek DC. Hemodynamics and the focal origin of atherosclerosis: A spatial approach to endothelial structure, gene expression, and function. Ann N Y Acad Sci. 2001;947:7-16; discussion 16-17
12. Davies PF. Hemodynamic shear stress and the endothelium in cardiovascular pathophysiology. Nat Clin Pract Cardiovasc Med. 2009;6:16-26
13. Loth F, Fischer PF, Arslan N, Bertram CD, Lee SE, Royston TJ, Shaalan WE, Bassiouny HS. Transitional flow at the venous anastomosis of an arteriovenous graft: Potential activation of the erk $1 / 2$ mechanotransduction pathway. J Biomech Eng. 2003;125:49-61
14. Papadaki M, Eskin SG. Effects of fluid shear stress on gene regulation of vascular cells. Biotechnol. Prog. 1997;13:209-221
15. Nerem RM, Harrison DG, Taylor WR, Alexander RW. Hemodynamics and vascular endothelial biology. J Cardiovasc Pharmacol. 1993;21 Suppl 1:S6-10
16. Caro CG, Fitz-Gerald JM, Schroter RC. Arterial wall shear and distribution of early atheroma in man. Nature. 1969;223:1159-1160
17. Helmlinger G, Geiger RV, Schreck S, Nerem RM. Effects of pulsatile flow on cultured vascular endothelial cell morphology. J Biomech Eng. 1991;113:123-131
18. Davies PF. Flow-mediated endothelial mechanotransduction. Physiol Rev. 1995;75:519-560
19. Papadaki M, Eskin SG. Effects of fluid shear stress on gene regulation of vascular cells. Biotechnol Prog. 1997;13:209-221
20. Takagi J, Petre BM, Walz T, Springer TA. Global conformational rearrangements in integrin extracellular domains in outside-in and inside-out signaling. Cell. 2002;110:599-511
21. Berk BC. Atheroprotective signaling mechanisms activated by steady laminar flow in endothelial cells. Circulation. 2008;117:1082-1089
22. Davies PF, Mundel T, Barbee KA. A mechanism for heterogeneous endothelial responses to flow in vivo and in vitro. J Biomech. 1995;28:1553-1560
23. Jo H, Song H, Mowbray A. Role of nadph oxidases in disturbed flow- and bmp4induced inflammation and atherosclerosis. Antioxid Redox Signal. 2006;8:16091619
24. Chien S. Effects of disturbed flow on endothelial cells. Ann Biomed Eng. 2008;36:554-562
25. Garcia-Cardena G, Comander JI, Blackman BR, Anderson KR, Gimbrone MA. Mechanosensitive endothelial gene expression profiles: Scripts for the role of hemodynamics in atherogenesis? Ann $N$ Y Acad Sci. 2001;947:1-6
26. Zhao Y, Chen BP, Miao H, Yuan S, Li YS, Hu Y, Rocke DM, Chien S. Improved significance test for DNA microarray data: Temporal effects of shear stress on endothelial genes. Physiol Genomics. 2002;12:1-11
27. Dekker RJ, van Soest S, Fontijn RD, Salamanca S, de Groot PG, VanBavel E, Pannekoek H, Horrevoets AJ. Prolonged fluid shear stress induces a distinct set of endothelial cell genes, most specifically lung kruppel-like factor (klf2). Blood. 2002;100:1689-1698
28. Chen BP, Li YS, Zhao Y, Chen KD, Li S, Lao J, Yuan S, Shyy JY, Chien S. DNA microarray analysis of gene expression in endothelial cells in response to 24-h shear stress. Physiol Genomics. 2001;7:55-63
29. McCormick SM, Eskin SG, McIntire LV, Teng CL, Lu CM, Russell CG, Chittur KK. DNA microarray reveals changes in gene expression of shear stressed human umbilical vein endothelial cells. Proc Natl Acad Sci U S A. 2001;98:89558960
30. Conway DE, Williams MR, Eskin SG, McIntire LV. Endothelial cell responses to atheroprone flow are driven by two separate flow components: Low time-average shear stress and fluid flow reversal. American journal of physiology. 2010;298:H367-374
31. Himburg HA, Dowd SE, Friedman MH. Frequency-dependent response of the vascular endothelium to pulsatile shear stress. American journal of physiology. 2007;293:H645-653
32. Chu TJ, Peters DG. Serial analysis of the vascular endothelial transcriptome under static and shear stress conditions. Physiol Genomics. 2008;34:185-192
33. Dai G, Kaazempur-Mofrad MR, Natarajan S, Zhang Y, Vaughn S, Blackman BR, Kamm RD, Garcia-Cardena G, Gimbrone MA, Jr. Distinct endothelial phenotypes evoked by arterial waveforms derived from atherosclerosis-susceptible and resistant regions of human vasculature. Proc Natl Acad Sci U S A. 2004;101:14871-14876
34. Chang K, Weiss D, Suo J, Vega JD, Giddens D, Taylor WR, Jo H. Bone morphogenic protein antagonists are coexpressed with bone morphogenic protein 4 in endothelial cells exposed to unstable flow in vitro in mouse aortas and in human coronary arteries: Role of bone morphogenic protein antagonists in inflammation and atherosclerosis. Circulation. 2007;116:1258-1266
35. Sorescu GP, Sykes M, Weiss D, Platt MO, Saha A, Hwang J, Boyd N, Boo YC, Vega JD, Taylor WR, Jo H. Bone morphogenic protein 4 produced in endothelial cells by oscillatory shear stress stimulates an inflammatory response. J Biol Chem. 2003;278:31128-31135
36. SenBanerjee S, Lin Z, Atkins GB, Greif DM, Rao RM, Kumar A, Feinberg MW, Chen Z, Simon DI, Luscinskas FW, Michel TM, Gimbrone MA, Jr., GarciaCardena G, Jain MK. Klf2 is a novel transcriptional regulator of endothelial proinflammatory activation. J Exp Med. 2004;199:1305-1315
37. Tressel SL, Kim H, Ni CW, Chang K, Velasquez-Castano JC, Taylor WR, Yoon YS, Jo H. Angiopoietin-2 stimulates blood flow recovery after femoral artery occlusion by inducing inflammation and arteriogenesis. Arterioscler Thromb Vasc Biol. 2008;28:1989-1995
38. Tressel SL, Huang RP, Tomsen N, Jo H. Laminar shear inhibits tubule formation and migration of endothelial cells by an angiopoietin-2 dependent mechanism. Arterioscler Thromb Vasc Biol. 2007;27:2150-2156
39. Platt MO, Ankeny RF, Shi GP, Weiss D, Vega JD, Taylor WR, Jo H. Expression of cathepsin $k$ is regulated by shear stress in cultured endothelial cells and is increased in endothelium in human atherosclerosis. American journal of physiology. 2007;292:H1479-1486
40. Platt MO, Ankeny RF, Jo H. Laminar shear stress inhibits cathepsin I activity in endothelial cells. Arterioscler Thromb Vasc Biol. 2006;26:1784-1790
41. Won D, Zhu SN, Chen M, Teichert AM, Fish JE, Matouk CC, Bonert M, Ojha M, Marsden PA, Cybulsky MI. Relative reduction of endothelial nitric-oxide synthase expression and transcription in atherosclerosis-prone regions of the mouse aorta and in an in vitro model of disturbed flow. Am J Pathol. 2007;171:1691-1704
42. Villarreal G, Jr., Zhang Y, Larman HB, Gracia-Sancho J, Koo A, Garcia-Cardena G. Defining the regulation of klf4 expression and its downstream transcriptional targets in vascular endothelial cells. Biochem Biophys Res Commun. 2009
43. Sorescu GP, Song H, Tressel SL, Hwang J, Dikalov S, Smith DA, Boyd NL, Platt MO, Lassegue B, Griendling KK, Jo H. Bone morphogenic protein 4 produced in endothelial cells by oscillatory shear stress induces monocyte adhesion by stimulating reactive oxygen species production from a nox1-based nadph oxidase. Circ Res. 2004;95:773-779
44. Civelek M, Manduchi E, Riley RJ, Stoeckert CJ, Jr., Davies PF. Chronic endoplasmic reticulum stress activates unfolded protein response in arterial endothelium in regions of susceptibility to atherosclerosis. Circ Res. 2009;105:453-461
45. Passerini AG, Polacek DC, Shi C, Francesco NM, Manduchi E, Grant GR, Pritchard WF, Powell S, Chang GY, Stoeckert CJ, Jr., Davies PF. Coexisting proinflammatory and antioxidative endothelial transcription profiles in a disturbed flow region of the adult porcine aorta. Proc Natl Acad Sci U S A. 2004;101:24822487
46. Passerini AG, Shi C, Francesco NM, Chuan P, Manduchi E, Grant GR, Stoeckert CJ, Jr., Karanian JW, Wray-Cahen D, Pritchard WF, Davies PF. Regional determinants of arterial endothelial phenotype dominate the impact of gender or short-term exposure to a high-fat diet. Biochem Biophys Res Commun. 2005;332:142-148
47. Nerem RM, Alexander RW, Chappell DC, Medford RM, Varner SE, Taylor WR. The study of the influence of flow on vascular endothelial biology. Am J Med Sci. 1998;316:169-175
48. Boo YC, Hwang J, Sykes M, Michell BJ, Kemp BE, Lum H, Jo H. Shear stress stimulates phosphorylation of enos at $\operatorname{ser}(635)$ by a protein kinase a-dependent mechanism. Am J Physiol Heart Circ Physiol. 2002;283:H1819-1828
49. Boo YC, Sorescu G, Boyd N, Shiojima I, Walsh K, Du J, Jo H. Shear stress stimulates phosphorylation of endothelial nitric-oxide synthase at ser1179 by aktindependent mechanisms: Role of protein kinase a. J Biol Chem. 2002;277:33883396
50. Gallis B, Corthals GL, Goodlett DR, Ueba H, Kim F, Presnell SR, Figeys D, Harrison DG, Berk BC, Aebersold R, Corson MA. Identification of flow-dependent endothelial nitric-oxide synthase phosphorylation sites by mass spectrometry and regulation of phosphorylation and nitric oxide production by the phosphatidylinositol 3-kinase inhibitor ly294002. J Biol Chem. 1999;274:3010130108
51. Jin ZG, Wong C, Wu J, Berk BC. Flow shear stress stimulates gab1 tyrosine phosphorylation to mediate protein kinase $b$ and endothelial nitric-oxide synthase activation in endothelial cells. J Biol Chem. 2005;280:12305-12309
52. Mata-Greenwood E, Jenkins C, Farrow KN, Konduri GG, Russell JA, Lakshminrusimha S, Black SM, Steinhorn RH. Enos function is developmentally regulated: Uncoupling of enos occurs postnatally. Am J Physiol Lung Cell Mol Physiol. 2006;290:L232-241
53. Moore JP, Weber M, Searles CD. Laminar shear stress modulates phosphorylation and localization of rna polymerase ii on the endothelial nitric oxide synthase gene. Arterioscler Thromb Vasc Biol. 2010;30:561-567
54. Dimmeler S, Fleming I, FissIthaler B, Hermann C, Busse R, Zeiher AM. Activation of nitric oxide synthase in endothelial cells by akt-dependent phosphorylation. Nature. 1999;399:601-605
55. Fulton D, Gratton JP, McCabe TJ, Fontana J, Fujio Y, Walsh K, Franke TF, Papapetropoulos A, Sessa WC. Regulation of endothelium-derived nitric oxide production by the protein kinase akt. Nature. 1999;399:597-601
56. Cai H, Harrison DG. Endothelial dysfunction in cardiovascular diseases: The role of oxidant stress. Circ Res. 2000;87:840-844
57. Cardona-Sanclemente LE, Born GV. Effect of inhibition of nitric oxide synthesis on the uptake of Idl and fibrinogen by arterial walls and other organs of the rat. Br J Pharmacol. 1995;114:1490-1494
58. Dimmeler S, Hermann C, Galle J, Zeiher AM. Upregulation of superoxide dismutase and nitric oxide synthase mediates the apoptosis-suppressive effects of shear stress on endothelial cells. Arterioscler Thromb Vasc Biol. 1999;19:656664
59. Harrison DG, Widder J, Grumbach I, Chen W, Weber M, Searles C. Endothelial mechanotransduction, nitric oxide and vascular inflammation. J Intern Med. 2006;259:351-363
60. Tsao PS, Buitrago R, Chan JR, Cooke JP. Fluid flow inhibits endothelial adhesiveness. Nitric oxide and transcriptional regulation of vcam-1. Circulation. 1996;94:1682-1689
61. Harrison D, Griendling KK, Landmesser U, Hornig B, Drexler H. Role of oxidative stress in atherosclerosis. Am J Cardiol. 2003;91:7A-11A
62. Zhao Y, Srivastava D. A developmental view of microrna function. Trends Biochem Sci. 2007;32:189-197
63. van Rooij E, Olson EN. Micrornas: Powerful new regulators of heart disease and provocative therapeutic targets. J Clin Invest. 2007;117:2369-2376
64. Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Radmark O, Kim S, Kim VN. The nuclear rnase iii drosha initiates microrna processing. Nature. 2003;425:415-419
65. Gregory RI, Yan KP, Amuthan G, Chendrimada T, Doratotaj B, Cooch N, Shiekhattar R. The microprocessor complex mediates the genesis of micrornas. Nature. 2004;432:235-240
66. Denli AM, Tops BB, Plasterk RH, Ketting RF, Hannon GJ. Processing of primary micrornas by the microprocessor complex. Nature. 2004;432:231-235
67. Cordes KR, Srivastava D. Microrna regulation of cardiovascular development. Circ Res. 2009;104:724-732
68. Suarez Y, Sessa WC. Micrornas as novel regulators of angiogenesis. Circ Res. 2009;104:442-454
69. Kuehbacher A, Urbich C, Zeiher AM, Dimmeler S. Role of dicer and drosha for endothelial microrna expression and angiogenesis. Circ Res. 2007;101:59-68
70. Poliseno L, Tuccoli A, Mariani L, Evangelista M, Citti L, Woods K, Mercatanti A, Hammond S, Rainaldi G. Micrornas modulate the angiogenic properties of huvecs. Blood. 2006;108:3068-3071
71. Felli N, Fontana L, Pelosi E, Botta R, Bonci D, Facchiano F, Liuzzi F, Lulli V, Morsilli O, Santoro S, Valtieri M, Calin GA, Liu CG, Sorrentino A, Croce CM, Peschle C. Micrornas 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation. Proc Natl Acad Sci U S A. 2005;102:18081-18086
72. Suarez Y, Fernandez-Hernando C, Pober JS, Sessa WC. Dicer dependent micrornas regulate gene expression and functions in human endothelial cells. Circ Res. 2007;100:1164-1173
73. Harris TA, Yamakuchi M, Ferlito M, Mendell JT, Lowenstein CJ. Microrna-126 regulates endothelial expression of vascular cell adhesion molecule 1. Proc Natl Acad Sci U S A. 2008;105:1516-1521
74. Ji R, Cheng Y, Yue J, Yang J, Liu X, Chen H, Dean DB, Zhang C. Microrna expression signature and antisense-mediated depletion reveal an essential role of microrna in vascular neointimal lesion formation. Circ Res. 2007;100:15791588
75. Resnick N, Gimbrone MA, Jr. Hemodynamic forces are complex regulators of endothelial gene expression. Faseb J. 1995;9:874-882
76. Chiu JJ, Chen LJ, Lee PL, Lee CI, Lo LW, Usami S, Chien S. Shear stress inhibits adhesion molecule expression in vascular endothelial cells induced by coculture with smooth muscle cells. Blood. 2003;101:2667-2674
77. Dewey CJ, Bussolari S, Gimbrone MJ, Davies P. The dynamic response of vascular endothelial cells to fluid shear stress. J Biomech Eng. 1981;103:177185
78. Sdougos HP, Bussolari SR, Dewey CF. Secondary flow and turbulence in a cone-and-plate device. J Fluid Mech. 1984;138:379-404
79. Cheng C, Helderman F, Tempel D, Segers D, Hierck B, Poelmann R, van Tol A, Duncker DJ, Robbers-Visser D, Ursem NT, van Haperen R, Wentzel JJ, Gijsen F, van der Steen AF, de Crom R, Krams R. Large variations in absolute wall shear stress levels within one species and between species. Atherosclerosis. 2007;195:225-235
80. Ibrahim J, Miyashiro JK, Berk BC. Shear stress is differentially regulated among inbred rat strains. Circ Res. 2003;92:1001-1009
81. Jokinen MP, Clarkson TB, Prichard RW. Animal models in atherosclerosis research. Exp Mol Pathol. 1985;42:1-28
82. Farmakis TM, Soulis JV, Giannoglou GD, Zioupos GJ, Louridas GE. Wall shear stress gradient topography in the normal left coronary arterial tree: Possible implications for atherogenesis. Curr Med Res Opin. 2004;20:587-596
83. Asakura T, Karino T. Flow patterns and spatial distribution of atherosclerotic lesions in human coronary arteries. Circ Res. 1990;66:1045-1066
84. Del Gaudio C, Morbiducci U, Grigioni M. Time dependent non-newtonian numerical study of the flow field in a realistic model of aortic arch. Int J Artif Organs. 2006;29:709-718
85. Suo J, Ferrara DE, Sorescu D, Guldberg RE, Taylor WR, Giddens DP. Hemodynamic shear stresses in mouse aortas: Implications for atherogenesis. Arterioscler Thromb Vasc Biol. 2007;27:346-351
86. Lutz RJ, Cannon JN, Bischoff KB, Dedrick RL, Stiles RK, Fry DL. Wall shear stress distribution in a model canine artery during steady flow. Circ Res. 1977;41:391-399
87. Lei M, Kleinstreuer C, Truskey GA. Numerical investigation and prediction of atherogenic sites in branching arteries. J Biomech Eng. 1995;117:350-357
88. Kleinstreuer C, Hyun S, Buchanan JR, Jr., Longest PW, Archie JP, Jr., Truskey GA. Hemodynamic parameters and early intimal thickening in branching blood vessels. Crit Rev Biomed Eng. 2001;29:1-64
89. Cheng CP, Parker D, Taylor CA. Quantification of wall shear stress in large blood vessels using lagrangian interpolation functions with cine phase-contrast magnetic resonance imaging. Ann Biomed Eng. 2002;30:1020-1032
90. Tang BT, Cheng CP, Draney MT, Wilson NM, Tsao PS, Herfkens RJ, Taylor CA. Abdominal aortic hemodynamics in young healthy adults at rest and during lower limb exercise: Quantification using image-based computer modeling. Am J Physiol Heart Circ Physiol. 2006;291:H668-676
91. Buchanan JR, Jr., Kleinstreuer C, Truskey GA, Lei M. Relation between nonuniform hemodynamics and sites of altered permeability and lesion growth at the rabbit aorto-celiac junction. Atherosclerosis. 1999;143:27-40
92. Zadelaar S, Kleemann R, Verschuren L, de Vries-Van der Weij J, van der Hoorn J, Princen HM, Kooistra T. Mouse models for atherosclerosis and pharmaceutical modifiers. Arterioscler Thromb Vasc Biol. 2007;27:1706-1721
93. Nam D, Ni CW, Rezvan A, Suo J, Budzyn K, Llanos A, Harrison D, Giddens D, Jo H. Partial carotid ligation is a model of acutely induced disturbed flow, leading
to rapid endothelial dysfunction and atherosclerosis. Am J Physiol Heart Circ Physiol. 2009;297:H1535-1543
94. Jaffe EA, Nachman RL, Becker CG, Minick CR. Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J Clin Invest. 1973;52:2745-2756
95. Jaffe EA, Hoyer LW, Nachman RL. Synthesis of antihemophilic factor antigen by cultured human endothelial cells. J Clin Invest. 1973;52:2757-2764
96. Baudin B, Bruneel A, Bosselut N, Vaubourdolle M. A protocol for isolation and culture of human umbilical vein endothelial cells. Nat Protoc. 2007;2:481-485
97. Akeson AL, Mosher LB, Woods CW, Schroeder KK, Bowlin TL. Human aortic endothelial cells express the type i but not the type ii receptor for interleukin-1 (il1). J Cell Physiol. 1992;153:583-588
98. Yu SY, Song YM, Li AM, Yu XJ, Zhao G, Song MB, Lin CM, Tao CR, Huang L. Isolation and characterization of human coronary artery-derived endothelial cells in vivo from patients undergoing percutaneous coronary interventions. J Vasc Res. 2009;46:487-494
99. Marks RM, Czerniecki M, Penny R. Human dermal microvascular endothelial cells: An improved method for tissue culture and a description of some singular properties in culture. In Vitro Cell Dev Biol. 1985;21:627-635
100. Gargett CE, Bucak K, Rogers PA. Isolation, characterization and long-term culture of human myometrial microvascular endothelial cells. Hum Reprod. 2000;15:293-301
101. Booyse FM, Sedlak BJ, Rafelson ME, Jr. Culture of arterial endothelial cells: Characterization and growth of bovine aortic cells. Thromb Diath Haemorrh. 1975;34:825-839
102. Merrilees MJ, Scott L. Interaction of aortic endothelial and smooth muscle cells in culture. Effect on glycosaminoglycan levels. Atherosclerosis. 1981;39:147-161
103. Nishiyama T, Mishima K, Ide F, Yamada K, Obara K, Sato A, Hitosugi N, Inoue H, Tsubota K, Saito I. Functional analysis of an established mouse vascular endothelial cell line. J Vasc Res. 2007;44:138-148
104. Canault M, Peiretti F, Mueller C, Deprez P, Bonardo B, Bernot D, Juhan-Vague I, Nalbone G. Proinflammatory properties of murine aortic endothelial cells exclusively expressing a non cleavable form of tnfalpha. Effect on tumor necrosis factor alpha receptor type 2. Thromb Haemost. 2004;92:1428-1437
105. Kevil CG, Pruitt H, Kavanagh TJ, Wilkerson J, Farin F, Moellering D, DarleyUsmar VM, Bullard DC, Patel RP. Regulation of endothelial glutathione by icam1: Implications for inflammation. FASEB J. 2004;18:1321-1323
106. Seol GH, Ahn SC, Kim JA, Nilius B, Suh SH. Inhibition of endothelium-dependent vasorelaxation by extracellular $\mathrm{k}(+)$ : A novel controlling signal for vascular contractility. Am J Physiol Heart Circ Physiol. 2004;286:H329-339
107. Huang H, McIntosh J, Hoyt DG. An efficient, nonenzymatic method for isolation and culture of murine aortic endothelial cells and their response to inflammatory stimuli. In Vitro Cell Dev Biol Anim. 2003;39:43-50
108. Kevil CG, Bullard DC. In vitro culture and characterization of gene targeted mouse endothelium. Acta Physiol Scand. 2001;173:151-157
109. Kevil CG, Patel RP, Bullard DC. Essential role of icam-1 in mediating monocyte adhesion to aortic endothelial cells. Am J Physiol Cell Physiol. 2001;281:C14421447
110. Wei L, Freichel M, Jaspers M, Cuppens H, Cassiman JJ, Droogmans G, Flockerzi V, Nilius B. Functional interaction between trp4 and cftr in mouse aorta endothelial cells. BMC Physiol. 2001;1:3
111. Hwang J, Saha A, Boo YC, Sorescu GP, McNally JS, Holland SM, Dikalov S, Giddens DP, Griendling KK, Harrison DG, Jo H. Oscillatory shear stress stimulates endothelial production of o2- from p47phox-dependent nad(p)h oxidases, leading to monocyte adhesion. J Biol Chem. 2003;278:47291-47298
112. Magid R, Martinson D, Hwang J, Jo H, Galis ZS. Optimization of isolation and functional characterization of primary murine aortic endothelial cells.
Endothelium. 2003;10:103-109
113. Suh SH, Vennekens R, Manolopoulos VG, Freichel M, Schweig U, Prenen J, Flockerzi V, Droogmans G, Nilius B. Characterisation of explanted endothelial cells from mouse aorta: Electrophysiology and ca2+ signalling. Pflugers Arch. 1999;438:612-620
114. Kreisel D, Krupnick AS, Szeto WY, Popma SH, Sankaran D, Krasinskas AM, Amin KM, Rosengard BR. A simple method for culturing mouse vascular endothelium. J Immunol Methods. 2001;254:31-45
115. Lincoln DW, 2nd, Larsen AM, Phillips PG, Bove K. Isolation of murine aortic endothelial cells in culture and the effects of sex steroids on their growth. In Vitro Cell Dev Biol Anim. 2003;39:140-145
116. Chen S, Sega M, Agarwal A. "Lumen digestion" Technique for isolation of aortic endothelial cells from heme oxygenase-1 knockout mice. Biotechniques. 2004;37:84-86, 88-89
117. Kobayashi M, Inoue K, Warabi E, Minami T, Kodama T. A simple method of isolating mouse aortic endothelial cells. J Atheroscler Thromb. 2005;12:138-142
118. Zeisberg EM, Potenta S, Xie L, Zeisberg M, Kalluri R. Discovery of endothelial to mesenchymal transition as a source for carcinoma-associated fibroblasts.
Cancer Res. 2007;67:10123-10128
119. Zeisberg EM, Tarnavski O, Zeisberg M, Dorfman AL, McMullen JR, Gustafsson E, Chandraker A, Yuan X, Pu WT, Roberts AB, Neilson EG, Sayegh MH, Izumo S, Kalluri R. Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat Med. 2007;13:952-961

## CHAPTER 2

## SPECIFIC AIMS

## Project Significance

Atherosclerosis preferentially occurs in the lesion-prone areas exposed to disturbed flow conditions in branched or curved arteries, while the arterial regions exposed to unidirectional laminar flow are relatively lesion-free ${ }^{1-2}$. It is now well accepted that atherosclerosis is an inflammatory disease and the characteristic of the earliest stage of atherogenesis is the recruitment of innate cells such as monocytes and dendritic cells in the lesion prone areas subsequent to the expression of adhesion molecules ${ }^{3}$. In addition, disturbed flow conditions such as oscillatory shear (OS) alter gene expression in the vessel wall in a pro-inflammatory manner ${ }^{4-5}$. This includes the upregulation of adhesion molecules (ICAM-1, VCAM-1, and E-Selectin), overexpression of pro-inflammatory cytokine or chemokine (IL-6 and MCP-1), and induction of prothrombotic phenotype in endothelial cells (ECs). All of these disturbed flow induced responses in ECs are all considered as earliest stage of inflammation leading to the late development of atherosclerotic plaque. However, the precise mechanisms by which shear stress regulates gene expression and in turn governs inflammation and the development of atherosclerosis remain unclear.

MicroRNAs (miRNAs) are short noncoding RNAs, typically 18 to 22 nucleotides in length, and can regulate the expression of multiple genes at the post-transcriptional level. It is believed that miRNAs primarily function by interacting with 3 ' untranslated region (3' UTR) of specific target mRNAs in a sequence-specific manner ${ }^{6}$. Previous studies have shown the important role of miRNAs in the regulation of a multitude of
physiological functions, such as stem cell differentiation, neurogenesis, hematopoiesis, immune response, and skeletal and cardiac muscle development and stress ${ }^{7-13}$ Furthermore, a variety of diseases, such as cancer, diabetes, and heart hypertrophy and failure, have been related to aberrant expression of miRNAs. Although several miRNAs have been shown to play roles in cardiovascular development, angiogenesis, and vascular inflammation ${ }^{12,14}$, it has not been reported whether miRNAs are involved in the development of atherosclerosis. In this study, we investigate several mechanosensitivesensitive mRNAs and miRNAs in vitro and in vivo in response to different shear conditions and study their functional relevance in inflammatory responses.

## Project Objective

The goals of this project were 1) to determine which microRNAs and mRNAs are regulated by different flow conditions in vascular endothelial cells in vitro and in mouse carotid artery endothelium in vivo, and 2) to identify which miRNAs are responsible for vascular inflammation by disturbed flow. These results will help to identify novel targets as biomarkers of early disease or as therapeutic targets.

## Overall Hypothesis

Oscillatory shear (OS) and laminar shear (LS) stress differentially alter the expression of mechanosensitive miRNAs that regulate networks of gene expression, which in turn leads to inflammation in endothelial cells. This hypothesis was tested according to three specific aims using both in vitro and in vivo approaches via high throughput microarray analyses and functional validation of specific targets by qPCR:


Figure 2.1 Overall Hypothesis. Oscillatory and laminar shear stress differentially regulate miRNAs and mRNA, which in turn leads to inflammation in endothelial cells.

## Specific Aim 1

Develop a novel mouse model of experimentally inducible disturbed flow and a method for isolating endothelial cell RNA with intensive validation of minimal contamination, to examine the expression profiles of miRNA and mRNA in vivo.


Figure 2.2 Experimental layout for Specific Aim 1

To determine the effect of different hemodynamic profiles on miRNAs and mRNAs in vivo, we developed a novel mouse model of shear stress which creates low and oscillatory flow through partial ligation of the left common carotid artery (Figure 2.2). We also developed a simple method for endothelial RNA isolation from the flow-disturbed left and the contralateral right common carotid arteries. This mouse model is well characterized and the purity and quantity of isolated RNA is qualified for high throughput microarray applications. iMAEC lines were also developed for use in vitro to validate the novel miRNAs and mRNAs.

## Specific Aim 2 <br> Identify flow-sensitive miRNAs and mRNAs in partially ligated murine carotid endothelium and cultured HUVEC.

Hypothesis: Oscillatory shear stress (OS) alters expression profiles of miRNA and mRNA both in vivo and in vitro as compared to laminar shear stress (LS).

Using the mouse model and RNA isolation method developed in specific aim 1, the screening of miRNA and mRNA expressions in response to LS or OS was performed by high throughput microarray analyses using RNA samples from partially ligated carotid endothelium or cultured HUVEC. All microarray data was verified by real-time quantitative PCR (Figure 2.3). The in vivo mouse data was also validated using iMAEC lines.


Figure 2.3 Experimental layout for Specific Aim 2

## Specific Aim 3

Investigate the role of mechanosensitive miRNA-663 in OS induced cellular inflammation in HUVEC.

Hypothesis: The novel mechanosensitive miRNA, miR-663, mediates OS-induced inflammation in HUVEC.


Figure 2.4 Experimental layout for Specific Aim 3

In Specific Aim 2, miR-663 was found to be a novel mechanosensitive miRNA in HUVEC. To identify the role of OS-induced miR-663, we investigated the functional importance of the miR-663 (Figure 2.4). The depletion or elevation of miR-663 from cellular systems provided a useful tool to study the functional role of miR-663. In these studies, specific miRNA inhibitor (miR-663-LNA) or miRNA precursor (pre-miR-663) was used to knockdown or overexpress miR-663 expression respectively in HUVEC. Subsequently, the OS-induced inflammatory response was assessed via a monocyte binding assay.

## References

1. Ku DN, Giddens DP, Zarins CK, Glagov S. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis. 1985;5:293-302
2. VanderLaan PA, Reardon CA, Getz GS. Site specificity of atherosclerosis: Siteselective responses to atherosclerotic modulators. Arterioscler Thromb Vasc Biol. 2004;24:12-22
3. Ross R. Atherosclerosis--an inflammatory disease. N Engl J Med. 1999;340:115126
4. Sorescu GP, Song H, Tressel SL, Hwang J, Dikalov S, Smith DA, Boyd NL, Platt MO, Lassegue B, Griendling KK, Jo H. Bone morphogenic protein 4 produced in endothelial cells by oscillatory shear stress induces monocyte adhesion by stimulating reactive oxygen species production from a nox1-based nadph oxidase. Circ Res. 2004;95:773-779
5. Sorescu GP, Sykes M, Weiss D, Platt MO, Saha A, Hwang J, Boyd N, Boo YC, Vega JD, Taylor WR, Jo H. Bone morphogenic protein 4 produced in endothelial cells by oscillatory shear stress stimulates an inflammatory response. J Biol Chem. 2003;278:31128-31135
6. Zhao Y, Srivastava D. A developmental view of microrna function. Trends Biochem Sci. 2007;32:189-197
7. Krichevsky AM, Sonntag KC, Isacson O, Kosik KS. Specific micrornas modulate embryonic stem cell-derived neurogenesis. Stem Cells. 2006;24:857-864
8. Chen JF, Mandel EM, Thomson JM, Wu Q, Callis TE, Hammond SM, Conlon FL, Wang DZ. The role of microrna-1 and microrna-133 in skeletal muscle proliferation and differentiation. Nat Genet. 2006;38:228-233
9. Zhao Y, Samal E, Srivastava D. Serum response factor regulates a musclespecific microrna that targets hand2 during cardiogenesis. Nature. 2005;436:214220
10. Pedersen IM, Cheng G, Wieland S, Volinia S, Croce CM, Chisari FV, David M. Interferon modulation of cellular micrornas as an antiviral mechanism. Nature. 2007;449:919-922
11. Kloosterman WP, Lagendijk AK, Ketting RF, Moulton JD, Plasterk RH. Targeted inhibition of mirna maturation with morpholinos reveals a role for mir-375 in pancreatic islet development. PLoS Biol. 2007;5:e203
12. Felli N, Fontana L, Pelosi E, Botta R, Bonci D, Facchiano F, Liuzzi F, Lulli V, Morsilli O, Santoro S, Valtieri M, Calin GA, Liu CG, Sorrentino A, Croce CM, Peschle C. Micrornas 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation. Proc Natl Acad Sci U S A. 2005;102:18081-18086
13. Tay YM, Tam WL, Ang YS, Gaughwin PM, Yang H, Wang W, Liu R, George J, Ng HH, Perera RJ, Lufkin T, Rigoutsos I, Thomson AM, Lim B. Microrna-134 modulates the differentiation of mouse embryonic stem cells, where it causes post-transcriptional attenuation of nanog and Irh1. Stem Cells. 2008;26:17-29
14. Harris TA, Yamakuchi M, Ferlito M, Mendell JT, Lowenstein CJ. Microrna-126 regulates endothelial expression of vascular cell adhesion molecule 1. Proc Natl Acad Sci U S A. 2008;105:1516-1521

## CHAPTER 3

## DEVELOPMENT OF IMMORTALIZED MOUSE AORTIC ENDOTHELIAL CELL (IMAEC) LINES

## Summary

Our understanding of endothelial cell biology has increased during the past decades, largely due to the availability of primary endothelial cell cultures from various species and vascular beds. Given the availability of numerous transgenic mouse lines, we and others have attempted to isolate and culture primary mouse aortic endothelial cells (MAEC). Yet, isolation and maintenance of primary MAEC remain a formidable challenge: They are time-, cost-, and labor-intensive. Moreover, MAEC have limited proliferative potential and high tendency to trans-differentiate to mesenchymal cells during culture. Therefore, we developed immortalized MAEC (iMAEC) lines from aortas obtained from C57BL/6 mice including wild type and several transgenics such as p47 KO, eNOS KO, and caveolin-1 KO. Primary MAEC were first isolated from mouse cultured aortic explants on collagen gels, and were immortalized by using retrovirus expressing polyoma middle T antigen. Immortalized cells were selected by G418 antibiotics. iMAEC's were further selected by FACS using Dil-Ac-LDL, and were analyzed for their expression of endothelial markers including PECAM1, eNOS, VEcadherin, and von Willebrand factor. These cell lines were characterized for their functional responses to laminar shear stress. iMAEC aligned in the direction of flow, increased the expression and phosphorylation of eNOS, and induced KLF2 expression. The methods used to develop iMAEC lines described here can be applied to generate
additional MAEC lines, using various knockout mouse lines, to provide a critical tool to investigate the vascular biology and pathobiology.

## Introduction

Endothelial cells (ECs) play critical roles in cardiovascular system. As the inner lining of the blood vessel, ECs are barriers which control the transportation of molecules between blood and tissues. Not only do ECs act as a passive barrier inside the vessel, it is hypothesized that ECs also play an active role in maintaining physiological homeostasis in response to stimuli ${ }^{1}$. Endothelial dysfunction is thought to be one of the earliest stages in the onset of atherosclerosis ${ }^{2}$. This dysfunction is characterized by gene dysregulation and inflammatory responses ${ }^{2-3}$. Therefore, cultured ECs are an important tool to study vascular physiology and disease pathology.

ECs from different origins and species have been successfully cultured for several decades ${ }^{4-5}$. The most common human primary ECs used in culture includes human umbilical vein cord endothelial cells (HUVECs) ${ }^{6}$, human aortic endothelial cells (HAECs) ${ }^{7}$, human coronary artery endothelial cells (HCAEC) ${ }^{8}$, and microvascular $\mathrm{ECs}^{9-10}$. In addition, ECs culture is also available from other species, such as bovine aortic endothelial cells (BAECs) ${ }^{11}$, pig aortic endothelial cells (PAECs) ${ }^{12}$ and mouse ECs ${ }^{13-27}$. Due to the numerous transgenic mouse lines, the isolation and culture of mouse ECs is of particular interest. Several studies have developed methods for isolation primary mouse aortic endothelial cells (MAECs) which have been used for experiments ${ }^{17-18, ~ 22-27}$. However, the isolation and maintenance of primary MAECs remain a formidable challenge: They are time-, cost-, and labor-intensive. The main obstacle in primary

MAECs isolation is the low cell number in a single anima, the limited proliferative potential, and contamination of other cell types. Moreover, studies have shown MAECs have high tendency to trans-differentiate to mesenchymal cells during culture ${ }^{28-29}$. Therefore, development of immortalized MAECs lines could provide tremendous benefits and provide critical tools for functional studies.

In this study, we have developed several iMAEC lines including iMAEC-WT, iMAECeNOSKO, iMAEC-cavKO, and iMAEC-p47KO. We carried out detailed characteristic studies to show that these iMAEC lines maintain endothelial phenotype. All the cells expressed endothelial specific markers such as PECAM-1, VE-Cadherin, and von Willebrand factor (vWF) but not smooth cell marker ( $\alpha$-SMA). Importantly, iMAEC-WT possesses typical endothelial responses to shear stress. The cells aligned in the direction of flow, increased the expression and phosphorylation of eNOS, and elevated KLF2 expression. In addition, the expression of VCAM-1 showed significant increase in iMAEC-eNOSKO compared to iMAEC-WT, demonstrating the use of knockout cell lines to address the function of specific genes. Collectively, these results validate our method for development iMAEC lines which can be used to generate more iMAEC-KO lines. This method, used to develop endothelial cell lines, provides a critical tool to investigate the vascular biology and pathophysiology.

## Methods

## Mice

Mouse aortic endothelial cells were isolated from several different transgenic (and wildtype) mouse lines. Wildtype C57BI/6 and p47 ${ }^{\text {phox }}$ knockout mice were purchased
from Jackson Laboratories (Bar Harbor, Maine). Caveolin-1 knockout mice were kindly provided by Dr. Marek Drab (Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany); eNOS knockout mice were kindly provided by Dr. Mark C. Fishman and Dr. Paul Huang (Cardiovascular Research Center, Harvard Medical School, Charlestown, MA).

## Primary MAEC Isolation

Mice used for MAEC isolation were 4 weeks old. Each mouse was sacrificed by $\mathrm{CO}_{2}$ asphyxiation and doused in $70 \%$ ethanol. The abdominal and thoracic cavity was opened and the mouse was perfused, via the left ventricle, with $3-4 \mathrm{~mL}$ of sterile heparinized (10U/mL) 1X Hank's buffered salt solution (HBSS, Cellgro). All organs were removed except for the thoracic/abdominal aorta, which was left intact. Perivascular fat tissue and adventitia were removed from the ventral side of the aorta. To lyse the cells surrounding the artery while preserving the lumen, the aorta was incubated with HBSS containing $0.5 \%$ TritonX-100 for 5 minutes. It is important to note the Triton solution was not allowed to contact the endothelium. The clean aorta was removed after 5 rinses with fresh HBSS and placed in a sterile dish of cold HBSS. The aorta was cut into small rings ( 1 mm long) using a sterile scalpel and each aorta ring was cut open with a small scissors. The aorta section was carefully transferred (lumen side down) to a bead of collagen gel. The composition of collagen gel is a mixture of type I collagen (BioRad) and EGM2-MV (Lnoza) to the final concentration of $1.75 \mathrm{mg} / \mathrm{ml}$. Note that each piece should lay flat on the surface of collagen gel and the collagen gel bead submerged with EGM2-MV without disturbing aorta piece. The explants were observed daily and cultured in incubator in $37^{\circ} \mathrm{C}$ and $5 \% \mathrm{CO}_{2}$. The key steps of primary MAEC isolation are summarized in Figure 3.1.


Figure 3.1 Scheme of mouse aortic endothelial cell isolation and immortalization.

## Immortalization

Cells were immortalized by infection with a polyoma middle-sized T-antigen (PmT) as previously described by Balconi et. al ${ }^{30}$. PmT-producing packaging cell line was kindly provided by Dr. Elisabetta Dejana (Institute of Pharmacological Research, Milan, Italy). Briefly, PmT conditioned medium was collected, $0.22 \mu \mathrm{~m}$-sterile-filtered, and stored at $80^{\circ} \mathrm{C}$ until use. After MAECs have proliferated on the collagen gel, the aorta piece was removed followed by addition of complete growth media (DMEM with 10\% FBS, crude extract of ECGS, 1\% penicillin and streptomycin). After culture for one day, cells were treated with the PmT conditioned medium, along with $8 \mu \mathrm{~g} / \mathrm{ml}$ polybrene (Sigma) for 4 hours at $37^{\circ} \mathrm{C}$. After the incubation with PmT, media was removed and replaced with complete growth medium. Forty-eight hours later, cells were passaged into a 48-well plate and grown in selective growth medium containing G418 ( $800 \mu \mathrm{~g} / \mathrm{ml}$ ). Cells were
observed and passaged for several weeks (4 to 8 weeks) before complete cell selection was observed (summarized in Figure 3.1).

## FACS cell sorting

Cells were stained with 1,1'-dioctadecyl-3,3,3,3'-tetramethyl-indocarbocyanine perchlorate (Dil-Ac-LDL) and then sorted by fluorescence-activated cell sorting (FACS). Briefly, cells were incubated with 10 $\mu \mathrm{g} / \mathrm{mL}$ Dil-Ac-LDL (Biomedical Technologies) for 4 hours at $37^{\circ} \mathrm{C}$. Cells were then washed three times with fresh growth medium, trypsinized with $0.05 \%$ trypsin-EDTA, pelleted for 3 minutes at 2,300 RPM, and resuspended in $0.5-1.0 \mathrm{~mL}$ of sorting buffer (1\% FBS in 1X calcium- and magnesium-free HBSS). Cells were then sorted using a FACS VantageSE (Becton Dickinson, San Jose, CA) based on relative fluorescence intensity of Dil using common gates for morphology (FSC-H vs SSC-H), singlets (FSC-W vs SSC-H), and separation gates for Dil staining. Positive cells were collected in complete growth media and seeded to a gelatin-coated ( $0.1 \%$ ) culture dish. Cells were then observed and passaged at a ratio of 1 to 2 until characterization experiments.

## Immunocytochemistry

Primary antibodies against PECAM-1 (Santa Cruz), VE-Cadherin (Cayman Chemical), Von Willebrand factor (Dako) and smooth muscle cell $\alpha$-actin (Sigma) were used for immunocytochemical staining of the iMAEC and control cells such as HUVEC, 3T3 fibroblast and rat aortic smooth muscle cells (RASM). Cells were fixed with 4\% paraformaldehyde and permeabilized in 0.2\% Triton X-100. Primary antibody in 3\% bovine serum albumin was applied overnight at $4^{\circ} \mathrm{C}$, followed by incubation with secondary antibody conjugated rhodamine red-X (Molecular Probes) for 1 hour at room temperature. Nuclei were labeled with Hoechst \#33258 in 3\% bovine serum albumin for

15 min at room temperature. All cells were mounted using Dako mounting media (Dako), and fluorescence images were collected via fluorescence microscope (Zeiss epifluorescent microscope).

## Shear Stress Studies

iMAEC were grown to confluent monolayers in 100-mm tissue culture dishes (Falcon) and were subsequently exposed to laminar shear (LS, 15 dynes $/ \mathrm{cm}^{2}$ ) or oscillatory shear (OS, $\pm 5$ dynes $/ \mathrm{cm}^{2}$ ) via cone-and-plate shear apparatus as previously described by us [ref]. All shear stress studies were performed in growth medium for 24 h .

## Western Blotting

Following experimental treatment, cells were washed three times with ice-cold phosphate-buffered saline (PBS) and lysed with RIPA as described previously ${ }^{31}$.The lysate was further homogenized by sonication. The protein content of each sample was determined by Bio-Rad DC assay. Aliquots of cell lysate (20 $\mu \mathrm{g}$ of protein) were resolved by size on $10 \%$ SDS-polyacrylamide gels and subsequently transferred to a polyvinylidene difluoride membrane (Millipore). The membrane was incubated with a primary antibody overnight at $4{ }^{\circ} \mathrm{C}$, followed by incubation with an alkaline phosphataseconjugated secondary antibody for 1 h at room temperature. Protein expression was detected by a chemiluminescence method, and the intensities of immunoreactive bands were determined via densitometry using the NIH Image program ${ }^{32}$. Primary antibodies specific for KLF2, eNOS (BD Biosciences), phoso-eNOS (Ser1177) (Cellsignaling), actin (Santa Cruz), VCAM-1 (Santa Cruz), Flk-1 (Santa Cruz), Caviolin-1 (Santa Cruz) were used.

Quantitative real time $P C R(q P C R)$

Total RNA of each sample was reverse transcribed into cDNA using SuperScript III and random primers (Invitrogen) as previously described ${ }^{33}$. Briefly, qPCR was performed on selected genes using Brilliant II SYBR Green QPCR Master Mix (Stratagene) with custom designed primers on a Real-Time PCR System (ABI StepOne Plus). All qPCR results were normalized based on 18S RNA expression in each sample.

## Dihydroethidium (DHE) staining

iMAEC were stained in $2 \mu \mathrm{M}$ DHE in phosphate buffered saline for 30 minutes at $37^{\circ} \mathrm{C}$. Cells were then fixed with $4 \%$ paraformaldehyde and mounted with DAKO mounting media and immediately imaged with fluorescence microscope (Zeiss epi-fluorescent microscope).

## Results

The morphology of cultured mouse aortic endothelial cells.

The summary of MAEC isolation and immortalization is shown in Figure 3.1. During explant culture on the collagen gel, the endothelial cells migrated out of the explants from the edge and gradually covered the gel within an average of 3-4 days (Figure 3.2A). However, a portion of ECs attached to the collagen gel, did not migrate, and seemed to keep their original flow elongated morphology as seen in vivo (Figure 3.2B). Because of the immortalization and subculture in gelatin-coating dishes, the EC morphology looks different from primary isolated (Figure 3.2C). During the selection process, the contaminating cells (fibroblasts and smooth muscle cells etc.) competed with ECs for
growth space as indicated in Figure 3.2C. However, through cell selection and limited subculture, ECs eventually dominated cell populations. In addition, FACS helped to purify the iMAEC.


Figure 3.2 Morphology of mouse aortic endothelial cells. A, Aorta explant was cultured on top of collagen gel for 4 days. ECs grew and migrated out of the aorta piece. B, ECs grown on collagen gel without migration seems to keep their original elongated morphology. C, ECs Morphology changed after immortalization and subculture in gelatin-coating dishes. The contaminating cells competed growth space with ECs as indicated with an arrow. D. Pure cell population of iMAEC after cell sorting.

## Characterization of iMAEC

Since we have developed several iMAEC cell lines including wildtype (iMAEC-WT), caveolin-1 knockout (iMAEC-cavKO), eNOS knockout (iMAEC-eNOSKO), and p47 phox knockout (iMAEC-p47KO), the phenotype of these immortalized cells were carefully examined. First, we performed Western blot to confirm the lack of protein expression in knockout cell lines. As expected, we did not detect of cav-1 in iMAEC-cavKO and eNOS in iMAEC-eNOSKO (Figure 3.3).


Figure 3.3 Validation of knockout iMAEC lines. Total cell lysates were collected from iMAEC lines or control cells such as HUVEC, 3T3, and RASM. Western blot were performed to measure the protein expression using specific antibodies against Flk-1, eNOS and Cav-1. Actin blot is the internal loading control.

We then incubated cells with Dil-Ac-LDL to confirm the cell lines were endothelial cells. As shown in Figure. 3.4, iMAEC showed homogeneous Dil-Ac-LDL uptake similar to primary HUVEC. As expected, other cell types such as fibroblasts (3T3) and smooth muscle cells (RASM) failed to uptake Dil-Ac-LDL, suggesting the staining specificity of Dil-Ac-LDL to ECs. Next, several endothelial specific protein markers were examined by
immunocytochemistry. PECAM-1, VE-Cadherin, and von Willebriand factor (vWF) are well-known endothelial markers with specific staining patterns. PECAM-1 and VECadherin stained positive at the cell border in iMAEC and HUVEC but not in 3T3 and RASM (Figure 3.5). vWF also exhibited positive cytosolic staining patterns in iMAEC and HUVEC. In addition, the Western blot, shown in Figure 3.3, further supported the endothelial phenotype in iMAEC by expression of FIk-1, a VEGF receptor, which specific to endothelial cells. In contrast, smooth muscle cell specific maker ( $\alpha$-SMA) was used to further confirm iMAEC lines were free contaminating cell types. As expected, positive staining was only seen in RASM, demonstrating that iMAEC lines kept their endothelial phenotype without other cell population contamination.


Figure 3.4 Characterization of iMAEC lines by Dil-Ac-LDL staining. iMAEC lines including wildtype (iMAEC-WT), caveolin-1 knockout (iMAEC-cavKO), eNOS knockout (iMAEC-eNOSKO), and p47phox knockout (iMAEC-p47KO), were incubated with Dil-Ac-LDL ( $10 \mu \mathrm{~g} / \mathrm{mL}$ ) for 4 hr , and images were taken by with fluorescence microscope. HUVEC was served as positive control while $3 T 3$ and RASM were negative control.


Figure 3.5 Characterization of iMAEC lines by immunostaining against PECAM-1, VE-Cadherin, von Willebrand factor, and smooth muscle cell $\alpha$ actin. iMAEC lines including wildtype (iMAEC-WT), caveolin-1 knockout (iMAECcavKO), eNOS knockout (iMAEC-eNOSKO), and p47phox knockout (iMAECp47KO), were used for immunostaining using endothelial markers PECAM-1, VECadherin, and von Willenbrand factor (vWF). Smooth muscle cell $\alpha$-actin ( $\alpha$ SMA) was also used as negative marker for ECs. HUVEC was served as positive control while $3 T 3$ and RASM were negative control.

Shear responses in iMAEC

To demonstrate the similarities between iMAEC and primary human ECs, we tested the gene expression response when iMAEC were exposed to shear stress. Numerous reports have shown laminar shear stress (LS) induces KLF2 and eNOS mRNA and protein expression compared to static culture or oscillatory shear (OS $)^{34-35}$. In addition, LS also elevates eNOS phosphorylation which, in turn, increases eNOS enzyme activity and nitric oxide production ${ }^{36}$. We performed shear studies using iMAEC-WT and examined the expression of KLF2 and eNOS. Consistent with previous reports, after 24 hr shear stress, iMAEC-WT aligned with flow direction in LS but not OS (Figure $3.6 \mathrm{~A})^{37}$. We found that LS significantly increases KLF2 and eNOS expression both at mRNA (Figure 3.6B) and protein (Figure 3.6C) levels. Furthermore, eNOS
phosphorylation was also elevated in iMAEC-WT exposed to LS when compared to OS.
These results demonstrate that iMAEC reacted in a similar manner to other cultured endothelial cells.

A
Static LS OS


C


Figure 3.6 iMAEC-WT maintained endothelial phenotype in response to shear stress. iMAEC-WT were exposed to LS or OS or kept for static for 24hr. A, iMAEC-WT aligned with the flow direction when exposed to LS but not OS or static control. B, Total RNA were collected and qPCR were performed to measure mRNA expression of KLF2 and eNOS. C, Total cell lysates were collected and protein level of KLF2 and eNOS were measured by Western blot. Phosphorylation of eNOS was also measured. Data were shown as mean $\pm S E M, n=3$.

To further demonstrate that iMAEC lines are a useful tool to study the gene function, we tested the functional differences between wildtype and knockout cell lines. Since it has been shown that nitric oxide treatment in cultured HUVEC decreases VCAM-1 expression ${ }^{38}$, we first examined the protein expression of VCAM-1 between iMAEC-WT and iMAEC-eNOSKO under different shear conditions. VCAM-1 protein expression significantly decreased in iMAEC-WT exposed to LS compared to OS; however, no difference of VCAM-1 expression between LS and OS was detected in iMAEC-eNOSKO cells (Figure 3.7). Interestingly, VCAM-1 expression in iMAEC-eNOSKO was significantly higher compared to iMAEC-WT (Figure 3.7). These results support the notion that nitric oxide, which is produced by LS stimulated-eNOS, inhibits the expression of VCAM-1.


Figure. 3.7 VCAM-1 expression is elevated in iMAEC-eNOSKO while superoxide production is diminished in iMAEC-p47KO. A, iMAEC-WT and iMAEC-eNOSKO were exposed to LS or OS for 24 hr . Total cell lysates were collected and VCAM-1 protein expression was measured by Western blot. B, iMAEC-WT and iMAEC-p47KO were incubated with DHE ( $2 \mu \mathrm{M}$ ) for 30 min . Images were taken using fluorescence microscopy.

Finally, we also examined the superoxide expression in iMAEC-p47KO cells. Given p47 is an important component of NADPH oxidases which produce superoxide, lack of p47 in EC may reduce the production of superoxide ${ }^{21}$. As shown in Figure. 3.7B, the measurement of superoxide production by DHE staining in lower in iMAEC-p47KO cells compared to iMAEC-WT cells.

## Discussion

In this study, we developed a method to generate iMAEC lines which maintain endothelial phenotype and respond to shear stress. We also demonstrated functional differences between knockout and wildtype iMAEC lines in a gene specific manner. For example, iMAEC-p47KO showed diminished production of superoxide while iMAECeNOSKO exhibited elevated VCAM-1 protein expression. These results validate our method and provide a useful tool to study vascular biology. Given the vast array of transgenic mice, using our method, iMAEC lines can be generated, expanded, and shared within research communities to provide a valuable tool for researchers.

Over the years, several groups have suggested different methods for the isolation and culture of primary MAEC ${ }^{17-18,22-27}$. However, the major issue of most protocols is the failure to address the purity and expansion of primary MAEC. Cell culture experiments performed in vitro requires a pure cell population due to the diversity among different cell types. The impurity of primary MAEC comes from contaminating cells such as fibroblasts and SMCs or from the re-differentiation of MAEC. The characterization of endothelial cells should be conducted on regular basis to confirm the lack of
contamination and re-differentiation. This is especially important for primary MAEC because of the small cell number obtained from a signal mouse. Previous reports have shown the phenotypic change of cultured endothelial cells during passaging ${ }^{39}$. It is difficult to maintain the phenotype of primary MAEC in sufficient amounts for a series of experiments without excessive time and effort. In contrast, immortalized cells are easily expandable and maintain an EC phenotype that lasts several months. However, it should be noted that iMAEC lines only provide a model for studying the vascular biology or disease in vitro, and may provide different responses when compared to primary culture or in vivo studies. Because the cells were immortalized and cultured, the phenotype has been altered and is different from that in vivo, but our results showed that iMAEC still maintain some of the EC phenotypes, while losing others such as cell proliferation. Therefore, researchers should be cautious when interpreting iMAEC derived data.

The explants culture of aorta has been reported previously ${ }^{17,23,25}$. Most of the protocol used matrix gel as the base matrix for MAEC to grow and migrate ${ }^{17,23,25}$. Matrix gel has been widely used in angiogenesis assay that provides ECs an angiogenic environment and induces tube formation. This property of matrix gel causes a dilemma between stimulating cell proliferation/migration and changing the phenotype of the primary cells. Our method modified the explants culture by using a collagen gel with growth media. The results indicated that MAEC still maintain their original morphology while not stimulating tube formation (Figure 3.2). Our modified method also provided a high yield of primary MAECs and they could be easily identified by their morphology which is helpfully when evaluating potential contamination of other cell types.

Immortalized mouse endothelial cells isolated from embryo or brain in different transgenic mice have been reported in several studies ${ }^{30}$. These studies demonstrated the need of transgenic iMAEC lines to address questions about functions of specific genes. In our knowledge, this is the first report showing a method for generating immortalized MAEC. Because the origins of an EC (from artery, vein, or microvessels) show different responses to stimuli, our method provides another option to study arterial ECs in vascular biology.

In summary, we provide a simple method to generate iMAEC lines which maintain EC phenotype and respond to shear stress in a similar way as primary ECs. This method can be applied to generate various knockout MAEC lines to be used as critical tools in vascular biology and pathobiology.

## References

1. Tedgui A, Mallat Z. Anti-inflammatory mechanisms in the vascular wall. Circ Res. 2001;88:877-887
2. d'Uscio LV, Baker TA, Mantilla CB, Smith L, Weiler D, Sieck GC, Katusic ZS. Mechanism of endothelial dysfunction in apolipoprotein e-deficient mice. Arterioscler Thromb Vasc Biol. 2001;21:1017-1022
3. Rao RM, Yang L, Garcia-Cardena G, Luscinskas FW. Endothelial-dependent mechanisms of leukocyte recruitment to the vascular wall. Circ Res. 2007;101:234-247
4. Jaffe EA, Nachman RL, Becker CG, Minick CR. Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J Clin Invest. 1973;52:2745-2756
5. Jaffe EA, Hoyer LW, Nachman RL. Synthesis of antihemophilic factor antigen by cultured human endothelial cells. J Clin Invest. 1973;52:2757-2764
6. Baudin B, Bruneel A, Bosselut N, Vaubourdolle M. A protocol for isolation and culture of human umbilical vein endothelial cells. Nat Protoc. 2007;2:481-485
7. Akeson AL, Mosher LB, Woods CW, Schroeder KK, Bowlin TL. Human aortic endothelial cells express the type i but not the type ii receptor for interleukin-1 (il1). J Cell Physiol. 1992;153:583-588
8. Yu SY, Song YM, Li AM, Yu XJ, Zhao G, Song MB, Lin CM, Tao CR, Huang L. Isolation and characterization of human coronary artery-derived endothelial cells in vivo from patients undergoing percutaneous coronary interventions. J Vasc Res. 2009;46:487-494
9. Marks RM, Czerniecki M, Penny R. Human dermal microvascular endothelial cells: An improved method for tissue culture and a description of some singular properties in culture. In Vitro Cell Dev Biol. 1985;21:627-635
10. Gargett CE, Bucak K, Rogers PA. Isolation, characterization and long-term culture of human myometrial microvascular endothelial cells. Hum Reprod. 2000;15:293-301
11. Booyse FM, Sedlak BJ, Rafelson ME, Jr. Culture of arterial endothelial cells: Characterization and growth of bovine aortic cells. Thromb Diath Haemorrh. 1975;34:825-839
12. Merrilees MJ, Scott L. Interaction of aortic endothelial and smooth muscle cells in culture. Effect on glycosaminoglycan levels. Atherosclerosis. 1981;39:147-161
13. Nishiyama T, Mishima K, Ide F, Yamada K, Obara K, Sato A, Hitosugi N, Inoue H, Tsubota K, Saito I. Functional analysis of an established mouse vascular endothelial cell line. J Vasc Res. 2007;44:138-148
14. Canault M, Peiretti F, Mueller C, Deprez P, Bonardo B, Bernot D, Juhan-Vague I, Nalbone G. Proinflammatory properties of murine aortic endothelial cells exclusively expressing a non cleavable form of tnfalpha. Effect on tumor necrosis factor alpha receptor type 2. Thromb Haemost. 2004;92:1428-1437
15. Kevil CG, Pruitt H, Kavanagh TJ, Wilkerson J, Farin F, Moellering D, DarleyUsmar VM, Bullard DC, Patel RP. Regulation of endothelial glutathione by icam1: Implications for inflammation. FASEB J. 2004;18:1321-1323
16. Seol GH, Ahn SC, Kim JA, Nilius B, Suh SH. Inhibition of endothelium-dependent vasorelaxation by extracellular $k(+)$ : A novel controlling signal for vascular contractility. Am J Physiol Heart Circ Physiol. 2004;286:H329-339
17. Huang H, McIntosh J, Hoyt DG. An efficient, nonenzymatic method for isolation and culture of murine aortic endothelial cells and their response to inflammatory stimuli. In Vitro Cell Dev Biol Anim. 2003;39:43-50
18. Kevil CG, Bullard DC. In vitro culture and characterization of gene targeted mouse endothelium. Acta Physiol Scand. 2001;173:151-157
19. Kevil CG, Patel RP, Bullard DC. Essential role of icam-1 in mediating monocyte adhesion to aortic endothelial cells. Am J Physiol Cell Physiol. 2001;281:C14421447
20. Wei L, Freichel M, Jaspers M, Cuppens H, Cassiman JJ, Droogmans G, Flockerzi V, Nilius B. Functional interaction between trp4 and cftr in mouse aorta endothelial cells. BMC Physiol. 2001;1:3
21. Hwang J, Saha A, Boo YC, Sorescu GP, McNally JS, Holland SM, Dikalov S, Giddens DP, Griendling KK, Harrison DG, Jo H. Oscillatory shear stress
stimulates endothelial production of o2- from p47phox-dependent nad(p)h oxidases, leading to monocyte adhesion. J Biol Chem. 2003;278:47291-47298
22. Magid R, Martinson D, Hwang J, Jo H, Galis ZS. Optimization of isolation and functional characterization of primary murine aortic endothelial cells. Endothelium. 2003;10:103-109
23. Suh SH, Vennekens R, Manolopoulos VG, Freichel M, Schweig U, Prenen J, Flockerzi V, Droogmans G, Nilius B. Characterisation of explanted endothelial cells from mouse aorta: Electrophysiology and ca2+ signalling. Pflugers Arch. 1999;438:612-620
24. Kreisel D, Krupnick AS, Szeto WY, Popma SH, Sankaran D, Krasinskas AM, Amin KM, Rosengard BR. A simple method for culturing mouse vascular endothelium. J Immunol Methods. 2001;254:31-45
25. Lincoln DW, 2nd, Larsen AM, Phillips PG, Bove K. Isolation of murine aortic endothelial cells in culture and the effects of sex steroids on their growth. In Vitro Cell Dev Biol Anim. 2003;39:140-145
26. Chen S, Sega M, Agarwal A. "Lumen digestion" Technique for isolation of aortic endothelial cells from heme oxygenase-1 knockout mice. Biotechniques. 2004;37:84-86, 88-89
27. Kobayashi M, Inoue K, Warabi E, Minami T, Kodama T. A simple method of isolating mouse aortic endothelial cells. J Atheroscler Thromb. 2005;12:138-142
28. Zeisberg EM, Potenta S, Xie L, Zeisberg M, Kalluri R. Discovery of endothelial to mesenchymal transition as a source for carcinoma-associated fibroblasts. Cancer Res. 2007;67:10123-10128
29. Zeisberg EM, Tarnavski O, Zeisberg M, Dorfman AL, McMullen JR, Gustafsson E, Chandraker A, Yuan X, Pu WT, Roberts AB, Neilson EG, Sayegh MH, Izumo S, Kalluri R. Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat Med. 2007;13:952-961
30. Balconi G, Spagnuolo R, Dejana E. Development of endothelial cell lines from embryonic stem cells: A tool for studying genetically manipulated endothelial cells in vitro. Arterioscler Thromb Vasc Biol. 2000;20:1443-1451
31. Mowbray AL, Kang DH, Rhee SG, Kang SW, Jo H. Laminar shear stress upregulates peroxiredoxins (prx) in endothelial cells: Prx 1 as a mechanosensitive antioxidant. J Biol Chem. 2008;283:1622-1627
32. Boo YC, Sorescu G, Boyd N, Shiojima I, Walsh K, Du J, Jo H. Shear stress stimulates phosphorylation of endothelial nitric-oxide synthase at ser1179 by aktindependent mechanisms: Role of protein kinase a. J Biol Chem. 2002;277:33883396
33. Nam D, Ni CW, Rezvan A, Suo J, Budzyn K, Llanos A, Harrison D, Giddens D, Jo H. Partial carotid ligation is a model of acutely induced disturbed flow, leading to rapid endothelial dysfunction and atherosclerosis. Am J Physiol Heart Circ Physiol. 2009;297:H1535-1543
34. Fledderus JO, van Thienen JV, Boon RA, Dekker RJ, Rohlena J, Volger OL, Bijnens AP, Daemen MJ, Kuiper J, van Berkel TJ, Pannekoek H, Horrevoets AJ. Prolonged shear stress and klf2 suppress constitutive proinflammatory transcription through inhibition of atf2. Blood. 2007;109:4249-4257
35. van Thienen JV, Fledderus JO, Dekker RJ, Rohlena J, van Ijzendoorn GA, Kootstra NA, Pannekoek H, Horrevoets AJ. Shear stress sustains atheroprotective endothelial klf2 expression more potently than statins through mrna stabilization. Cardiovasc Res. 2006;72:231-240
36. Jin ZG, Wong C, Wu J, Berk BC. Flow shear stress stimulates gab1 tyrosine phosphorylation to mediate protein kinase $b$ and endothelial nitric-oxide synthase activation in endothelial cells. J Biol Chem. 2005;280:12305-12309
37. Sorescu GP, Sykes M, Weiss D, Platt MO, Saha A, Hwang J, Boyd N, Boo YC, Vega JD, Taylor WR, Jo H. Bone morphogenic protein 4 produced in endothelial cells by oscillatory shear stress stimulates an inflammatory response. J Biol Chem. 2003;278:31128-31135
38. De Caterina R, Libby P, Peng HB, Thannickal VJ, Rajavashisth TB, Gimbrone MA, Jr., Shin WS, Liao JK. Nitric oxide decreases cytokine-induced endothelial activation. Nitric oxide selectively reduces endothelial expression of adhesion molecules and proinflammatory cytokines. J Clin Invest. 1995;96:60-68
39. Gagnon E, Cattaruzzi P, Griffith M, Muzakare L, LeFlao K, Faure R, Beliveau R, Hussain SN, Koutsilieris M, Doillon CJ. Human vascular endothelial cells with extended life spans: In vitro cell response, protein expression, and angiogenesis. Angiogenesis. 2002;5:21-33

## CHAPTER 4

## DEVELOPMENT OF A MOUSE MODEL OF PARTIAL CAROTID LIGATION WHICH ACUTELY INDUCES DISTURBED FLOW AND A METHOD TO ISOLATE INTIMAL EMDOTHELIUM RNA

## Summary

Atherosclerosis is closely associated with disturbed flow characterized by low and oscillatory shear stress, but studies directly linking it to atherogenesis is lacking. The major reason for this has been a lack of an animal model in which disturbed flow can be acutely induced and cause atherosclerosis. Here, we characterize partial carotid ligation as a model of disturbed flow with characteristics of low and oscillatory wall shear stress. We also describe a method of isolating intimal RNA in sufficient quantity from mouse carotid arteries. Using this model and method, we found that partial ligation causes upregulation of pro-atherogenic genes, downregulation of anti-atherogenic genes, endothelial dysfunction, and rapid atherosclerosis in 2 weeks and advanced lesions by 4 weeks. Partial ligation results in endothelial dysfunction, rapid atherosclerosis and advanced lesion development in a physiologically relevant model of disturbed flow. It also allows for easy and rapid intimal RNA isolation. This novel model and method could be used for genome-wide studies to determine molecular mechanisms underlying flowdependent regulation of vascular biology and diseases.

## Introduction

Atherosclerosis is a leading cause of morbidity and mortality in developed countries and is shown to be an inflammatory disease ${ }^{1-2}$. While multiple systemic factors such as hypercholesterolemia, diabetes, hypertension and smoking are well-known risk factors, atherosclerosis occurs preferentially at particular areas of disturbed flow characterized by low and oscillatory wall shear stress in branched or curved arteries ${ }^{3-4}$. In contrast, straight arterial regions are exposed to high and stable shear stress and are well protected from atherosclerosis ${ }^{4}$. Despite the close association between the two, evidence directly linking disturbed flow conditions to atherosclerosis has been lacking and the mechanisms responsible for pro- and anti-atherogenic effects of shear stress are still incompletely understood.

Shear stress is the tangential force imparted by viscous fluid flowing over endothelial cells ${ }^{5-6}$. Endothelial cells sense changes in shear stress and trigger mechanosensitive cell signaling events ${ }^{7-8}$. This in turn regulates endothelial function and structure, which affects vascular wall biology and pathophysiology ${ }^{5}$. Endothelial cells in straight part of the arteries experience unidirectional, high time-averaged wall shear stress (laminar shear). Laminar shear induces acute and chronic changes in endothelial cells leading to cell alignment, vasodilation, inhibition of inflammation and coagulation - atheroprotective responses. In contrast, disturbed flow stimulates pro-atherogenic responses including cell turnover, inflammation, thrombosis, and oxidative stress ${ }^{5-8}$.

The differential mechanisms by which disturbed and stable flow promotes and inhibits atherogenesis, respectively, have been a subject of intense study, mostly using cultured endothelial cells ${ }^{6-8}$. To define molecular mechanisms responsible for these changes, investigators have carried out DNA micro-array studies using endothelial cells and have
identified shear sensitive genes such as kruppel-like factor 2 (klf-2), endothelial nitric oxide synthase (eNOS), vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), and bone morphogenic protein 4 (BMP-4) ${ }^{9-16}$. While these in vitro studies have provided critical insights regarding shear sensitive mechanisms in cultured endothelial cells using modeled flow conditions, it cannot be assumed whether identical mechanisms are responsible for flow-dependent changes in vessels in vivo and vascular diseases such as atherosclerosis.

Several mouse models have been used to examine the role of shear sensitive genes and proteins in atherogenesis. These models include 1) naturally occurring athero-prone regions of arterial tree, 2) complete ligation of common carotid artery, and 3) perivascular shear modifier cuff placed around common carotid artery in mice deficient in Apolipoprotein-E (ApoE KO) or Low-density-lipoprotein receptor (LDLR KO). Naturally occurring athero-prone regions, such as lesser curvature of the aortic arch and root of innominate artery, are exposed to disturbed flow ${ }^{17}$. These flow disturbed areas in ApoE KO and LDLR KO mice develop measurable atherosclerotic lesions upon feeding atherogenic diets for at least 2 to 3 months ${ }^{18}$. While these studies show that flow disturbance is associated with atherogenesis, they do not provide evidence directly linking disturbed flow to atherogenesis as the flow disturbance is chronic from the early developmental stage and not due to an acute flow alteration. Other difficulties include small sample area of atherosclerosis, making reproducible endothelial RNA isolation from these areas in sufficient quantity and purity difficult ${ }^{18}$. Complete ligation of common carotid artery has also been used to study atherosclerosis ${ }^{19-20}$. This model results in no flow through the LCA and may be associated with endothelial denudation and thrombosis. It may not be a physiologically relevant model in the study of shearmediated atherosclerosis. ${ }^{21}$. Peri-vascular shear modifier cuff model was recently
reported and applied to the study of shear-mediated vascular inflammation and atherogenesis. It was shown to create three distinct regions of shear stress via application of a peri-vascular cuff around LCA - lower shear (proximal to the cuff), high shear (inside the cuff) or oscillatory shear (distal to the cuff) ${ }^{22}$. It is important to note thatlow and oscillatory shear stress, two characteristics of disturbed flow, were predicted to be in two separate regions. The region of oscillatory shear stress (distal to cuff) had high average shear stress, and the region of low average shear stress (proximal to cuff) did not have oscillatory shear stress component ${ }^{22}$. This dissociation of oscillatory shear from low shear stress is a unique characteristic of the cuff model and it is different from typical disturbed flow conditions displaying co-localized low and oscillatory shear stress.

Partial carotid ligation has previously been described as a model of flow reduction and has been used in the study of vascular remodeling ${ }^{23-24}$. In this model, three of the four caudal branches of left common carotid artery (LCA) were ligated, resulting in a substantial flow reduction in LCA with inward remodeling of LCA ${ }^{24}$. Changes in shear stress levels were not reported, and changes in flow were only described as flow reduction. Moreover, partial ligation has not previously been applied to the study of atherosclerosis. We hypothesized that partial carotid ligation causes low and oscillatory shear stresses- two major characteristics of disturbed flow which has been closely associated with atherogenesis ${ }^{5}$. We further hypothesized that this disturbed flow would cause atherosclerosis in hyperlipidemic conditions. To test these hypotheses, we first measured flow velocity and direction as well as vessel dimensions by a high resolution ultrasound system before and after partially ligating LCA. These measurements were used for computational fluid dynamics (CFD) modeling to estimate shear stress magnitudes and directions. Next, ApoE KO mice were partially ligated and fed a high fat diet to determine if this would result in atherosclerosis in LCA. In addition, we used a
simple method of isolating intimal RNA in significant quantity and purity from carotid arteries for mechanistic studies. Here, we report that partial ligation causes disturbed flow, induces atherosclerosis rapidly within two weeks upon feeding a high-fat diet and that the additional simple RNA isolation method is extremely useful to determine gene expression changes occurring in carotid intima in response to changes in shear stress.

## Methods

## Animal studies with partial ligation

All animal studies were carried out by procedures approved by Emory University IACUC. Male and female mice were ligated between 6 to 8 weeks of age. C57BI/6 and ApoE KO mice were obtained from Jackson Laboratories. All mice were fed a chow diet and water ad libitum until partial ligation. Partial ligation of LCA was carried out as previously described ${ }^{23}$ with minor modifications. Briefly, anesthesia was induced by intra-peritoneal injection of Xylazine ( $10 \mathrm{mg} / \mathrm{kg}$ ) and Ketamine ( $80 \mathrm{mg} / \mathrm{kg}$ ) mixture. Dehaired area was disinfected with Betadine and a ventral mid-line incision ( 4 to 5 mm ) was made in the neck. LCA was exposed by blunt dissection. Three of four caudal branches of LCA - left external artery, left internal artery, and occipital artery - were ligated with 6-0 silk suture (Figure. 4.1) while superior thyroid artery was left intact. The incision was then closed with Tissue-Mend (Veterinary Product Laboratories). Mice were monitored until recovery in a chamber on a heating pad following surgery. A single subcutaneous injection of Buprenorphine ( $0.1 \mathrm{mg} / \mathrm{kg}$ ) was given 12 hours after partial ligation for additional pain relief. For atherosclerosis studies, ApoE KO mice were fed the Paigen's high fat diet ${ }^{18}$ (Science Diets) immediately following partial ligation until sacrificed, from 2 days up to 6 weeks. C57BI/6 mice were continued on chow diet post-ligation.


Figure 4.1. Scheme of partial carotid ligation. Three branches of the LCA, ECA, ICA and OA were ligated in the left common carotid artery while leaving STA open.

High Resolution Ultrasound Measurements

All ultrasound measurements were taken using VEVO 770 High-resolution in vivo microimaging ultrasound system with a 30 MHz mouse probe (Visualsonics). Mice were anesthetized with inhaled isoflurane and body temperature was maintained on a heated stage for the duration of studies. Levels of anesthesia, heart rate, temperature, and respirations were continuously monitored. Pulse wave Doppler mode was used at the inlet, mid-point and outlet of the common carotid arteries (see Figure. 4.1) for measuring flow velocity, M-mode for vessel dimensions, and B-mode for vessel length. All measurements were gated to ECG and respiration.

CFD

The CFD models incorporated the geometry of mouse carotid arteries as determined by the ultrasound system. Left and right common carotid arteries of mouse are similar in geometry to a straight tube with different diameters at two ends (inlet and outlet, Figure.
4.1), which made a moving mesh CFD model simple. The geometric resolution of ultrasound images was $10 \mu \mathrm{~m}$. After segmentation and measuring, the diameter waveforms, sequential diameters, at three sections over one cardiac cycle were obtained and included the inlet diameters, outlet diameters and middle diameters. A 3D model was reconstructed based on the diameters at end diastole, and then a moving mesh was designed for the model according to individual diameter waveform ${ }^{17}$. The moving model replicated the geometry and compliance characteristics of the mouse carotid artery. Computations were performed using the commercial CFD-ACE code based on a finite volume method for solving the Navier-Stokes equations as previously described ${ }^{17}$. The velocity waveforms at three sections (inlet, outlet and mid-point, Figure 4.1) were acquired from Doppler measurements. Two end velocity waveforms were transformed to correspond with flow waveforms according to the diameter waveform. The flow waveforms were the inflow and outflow boundary conditions for CFD modeling. The mid-point velocity waveform was used later to compare with the CFD results at the same section. The blood was assumed to be a Newtonian and incompressible fluid, and the flowing state was assumed to be laminar flow.

## Intimal RNA isolation from carotid arteries

Mice were euthanized by $\mathrm{CO}_{2}$ inhalation according to Emory University's IACUC protocol and pressure perfused with saline containing heparin (10 units $/ \mathrm{mL}$ ) via left ventricle after severing inferior vena cava (IVC). LCA and RCA were then isolated and carefully cleaned of peri-adventitial fat. Tthe carotid lumen was quickly flushed (few seconds) with 150 I of QIAzol lysis reagent (QIAGEN) using 29G insulin syringe into a microfuge tube. The eluate was then used for intimal RNA isolation using miRNeasy mini kit (QIAGEN) according to manufacturer's instructions. The carotid artery leftover after flushing with QIAzol was used to prepare RNA from media and adventitia ( $\mathrm{m}+\mathrm{a}$ ). $\mathrm{m}+\mathrm{a}$
was snap frozen in liquid nitrogen, pulverized by mortar and pestle, lysed in QIAzol lysis reagent ( $700 \mu \mathrm{l}$ per carotid) and RNA was isolated using miRNeasy mini kit.

## Immunohistochemical staining studies (IHC)

Mice were euthanized and pressure perfused with saline containing heparin as described above. LCA and RCA were collected en block with the trachea and esophagus. For frozen sections, tissue was embedded in Tissue-Tek OCT, frozen on dry ice and stored at $-80^{\circ} \mathrm{C}$ until used. Frozen sections $(7 \mu \mathrm{~m})$ were fixed in acetone for 8 mintues, blocked with $10 \%$ goat serum for 1 hour at room temperature and incubated with primary antibodies overnight at $4^{\circ} \mathrm{C}^{9}$. To visualize primary antibodies, rhodamineconjugated secondary antibody was used for one hour at room temperature. Nuclei were counter stained with Hoechst \#33258. Oil-red-o staining was carried out using frozen sections as described ${ }^{25}$. For pentachrome staining, fixed tissue was paraffin embedded and sectioned at $5 \mu \mathrm{~m}$ and stained with Russell-Movat pentachrome stain kit (American Master Tech Scientific, Inc.). Micrographs were taken with Zeiss (Jena, Germany) epifluorescent microscope. Images were analyzed with NIH Image J software to quantify lesion size in each animal as described ${ }^{26}$.

## Vascular relaxation study

Vascular relaxation study was carried out using carotid rings obtained from LCA and RCA of partially ligation ApoE KO mice as previously described ${ }^{27}$.

## Statistical analysis

Data are presented as mean $\pm$ SEM. Student's t-test for two groups and ANOVA with Games-Howell post-hoc tests for comparing multiple groups were carried out using the SPSS program. $P<0.05$ was considered statistically significant.

## Results

Partial ligation results in low and oscillatory shear stress

To determine whether partial ligation caused changes in shear stress levels and direction, we ligated the external carotid, internal carotid and occipital arteries of LCA, while leaving the superior thyroid artery intact in C57BI/7 and ApoE KO mice (Figure 4.1). Next, flow velocity and direction and vessel dimensions of LCA and RCA were determined by high resolution ultrasonography. This showed a reduction in flow velocity during systole in LCA 1 and 7 days after ligation as expected (Figure 4.2). Moreover, flow direction was reversed during diastole in LCA 1 and 7 days after ligation (arrows in Figure 4.2). Similar flow profiles were observed at both the pre-defined inlet and outlet. Flow profiles as shown in Figure 4.2 were obtained from inlet. Blood flow in LCA decreased by $90 \% 1$ and 7 days after ligation but blood flow in RCA did not change significantly compared to that of pre-ligation (Figure 4.3).


Figure 4.2 The echocardiograms of partial carotid ligation. The echocardiograms show flow velocity profiles and reveals that partial ligation induces flow reversal (indicated by arrows) in LCA during diastole. Flow in RCA remains unchanged after ligation. Images shown were obtained from an ApoE KO mouse and are representative of at least 10 ApoE KO mice. Partial ligation in C57BL/6 mice results in similar flow reversal profiles.


Figure 4.3 Partial ligation reduces blood flow through the LCA, without significantly raising flow in RCA. The dotted line indicates pre-ligation flow level. Shown are mean $\pm$ SEM, $n=4$.

Using values of flow velocity, direction and vessel dimensions, we performed CFD modeling of LCA and RCA pre and 1 day post-ligation. This showed wall shear stress (WSS) value remained positive without any significant difference in RCA in both before and after ligation of LCA during the entire cardiac cycle (Figure 4.4). In contrast, WSS level was reduced during systole compared to that of RCA and became negative (due to flow reversal) during diastole in ligated LCA (Figure 4.4). Time-averaged WSS was reduced from approximately 110 dynes $/ \mathrm{cm}^{2}$ pre-ligation to 30 dynes $/ \mathrm{cm}^{2}$ post-ligation (Figure 4.4). These results show that partial ligation causes low and oscillatory shear stress in LCA, characteristic of disturbed flow.


Figure 4.4 CFD study: Partial ligation results in low and oscillatory shear stress. CFD was carried out using the values shown in Figure 4.3 (ligated ApoE KO mice). Figure shows WSS over a cardiac cycle. in LCA and RCA before and 1 day after partial ligation.

## Method of isolating intimal RNA from carotid arteries

Lumens of LCA and RCA from sham-ligated C57 mice were flushed once with Qiazol (Qiagen). The leftover LCA and RCA after collecting intimal RNA were also saved for analysis. RNA was then isolated with miRNeasy kit (Qiagen), resulting in 10 to 20 ng total RNA from each eluate (intima), while each leftover vessel (media + adventitia) resulted in approximately 800 ng to 1 g of total RNA. To test for endothelial purity of intimal RNA, we performed qPCR for PECAM-1 and $\alpha$-SMA (Figure. 4.5A). Intimal eluate showed endothelial marker PECAM-1 without any evidence of smooth muscle specific $\alpha-$ SMA. Conversely, media+adventitial RNA contained $\alpha$-SMA without any evidence of PECAM-1. Quantitative real-time PCR (qPCR) and en face protein staining
further confirmed the results (Figure. 4.5B,C). This shows that intimal RNA can be obtained from carotid arteries by our simple and reproducible method in sufficient quantity and purity without significant smooth muscle RNA contamination. In addition, media+adventitial RNA can also be isolated from the arteries without significant endothelial contamination.


Figure $4.5 \quad$ Validation of the method of intimal RNA preparation. Intimal RNA and medial+adventitial ( $m+a$ ) RNA were obtained from sham-operated RCA and LCA in C57BL/6 mice. RNA's were analyzed by semi-quantitative RT-PCR (A) and qPCR (B, C) for PECAM-1 and -SMA using 18s as an internal control. Bar graphs are mean $\pm$ SEM, $n=3$.

Partial ligation down-regulates KIf-2 and eNOS while up-regulating ICAM-1, VCAM-1, and BMP4

We tested whether intimal RNA obtained from LCA and RCA by our method could be used to study regulation of mechanosensitive genes in endothelial cells. Intimal RNA
from sham and partially ligated C57BL/6 mice were collected 2 days after surgery and analyzed by qPCR. We chose this 2 day time point because we did not observe measurable accumulation of Cd11b+ leukocytes in the intima in either LCA or RCA in these mice (Figure 4.6), while this seems to be a sufficient duration to ensure robust gene expression changes following the partial ligation.


Figure 4.6 Partial ligation does not cause detectable accumulation of Cd11b+ leukocytes in lumen of LCA 2 days post-ligation in c57BI/6 mice. C57BI/6 mice underwent partial ligation. En face staining was done 2 days post-ligation for both LCA and RCA with cd11b (red). Nuclei were counterstained with DAPI (blue). No Cd11b+ cells were seen in carotid lumen (orthogonal view from confocal z-stack imaging with main picture showing endothelial layer, A). However, some Cd11b+ cells were observed in the adventitia (orthogonal view from confocal z-stack with main picture showing adventitia, $B)$.

KIf-2 and eNOS were significantly down-regulated in LCA by $80 \%$ and $50 \%$, respectively, whereas BMP4, ICAM-1 and VCAM-1 were significantly up-regulated in LCA by approximately two-fold compared to RCA (Figure 4.7). In sham-operated mice, mRNA levels of these genes did not differ between LCA and RCA. Protein levels for ICAM-1 and VCAM-1 were verified by immunohistochemical staining (Figure 4.8). These results are consistent with previous observations in vitro and in vivo that KLF-2 and eNOS are down-regulated in areas of disturbed flow while BMP4, ICAM-1 and VCAM-1 are upregulated in areas of disturbed flow ${ }^{9-14,17, ~ 28-29}$.


Figure 4.7 Partial ligation results in decreases in KLF2 and eNOS while increasing BMP4, ICAM-1, and VCAM-1. Intimal RNA from sham and partially ligated C57BL/6 mice were collected from LCA and RCA, respectively, two days after surgery and analyzed by qPCR using 18s as internal control. Data shown as percent ratio of mRNA expressed in LCA over RCA of sham and partially ligated mice. Mean $\pm$ SEM, $n=3$ sham, $n=5$ ligated.


Figure 4.8 Partial ligation increases ICAM-1 and VCAM-1 protein expression in LCA. C57BL/6 mice underwent partial ligation, and LCA and RCA were collected 2 days postligation. Frozen sections were stained for ICAM-1, VCAM-1, and PECAM-1 (red). Nuclei were counterstained with Hoechst (blue). Images are representative of $n=4$ (A). Average staining intensity per stained area for each was quantified and shown as the mean $\pm S E$ (B).

Partial ligation in ApoE KO mice impairs endothelium-dependent vasorelaxation

To determine if disturbed flow causes endothelial dysfunction, we examined vasorelaxation response to acetylcholine. Carotid artery rings were obtained from LCA and RCA of partially ligated ApoE KO mice fed a high fat diet for 2 or 7 days. In 2 days post-ligation, LCA and RCA showed normal relaxation response to acetylcholine, exceeding $90 \%$ of precontracted tone (Figure 4.9). In 7 days, however, relaxation of LCA by acetylcholine was significantly inhibited, reaching only $50 \%$ of precontracted tone, while RCA vasorelaxtion response remained unchanged (Figure 4.9). To determine whether the impaired response was due to endothelial defect, endotheliumindependent vasodilator sodium nitroprusside (SNP) was studied. At 2 and 7 days postligation, both LCA and RCA relaxed to similar degrees in response to SNP (Figure 4.9), suggesting that disturbed flow induces endothelial dysfunction in ApoE KO mice in 7 days.


Figure 4.9 Partial ligation induces endothelial dysfunction. Arterial rings were obtained from LCA and RCA that were partially ligated and fed high-fat diet for 2 and 7 days in ApoE KO mice. Rings pre-constricted with PGF2 $\alpha$ were dilated with increasing concentrations of acetylcholine (A) or SNP (B) for endothelial-independent relaxation. Shown are mean $\pm$ SEM, $n=2$ for 2 days, and $n=6$ for 7 days.

## Partial ligation in ApoE-null mice causes accelerated

To examine whether partial ligation causes accelerated atherosclerosis, ApoE KO mice were partially ligated, and fed the high fat diet for one, two or three weeks. At one week, LCA did not show any evidence of atherosclerotic lesion as determined by Oil-Red-O staining (Figure 4.10). By two weeks, LCA developed robust lipid lesion that increased dramatically by three weeks after ligation (Figure 4.10). However, RCA did not show any lesions for as long as 6 weeks post-ligation.


Figure 4.10 Partial ligation and high-fat diet rapidly induces atherosclerosis in LCA of ApoE KO mice. ApoE KO mice were partially ligated and fed the high-fat diet for 1 to 3 weeks. Shown are representative images of at least $n=6$ (A). Frozen sections from LCA were stained with Oil-Red-O

Partial ligation in ApoE KO mice develops complex lesion

Next we examined whether partial ligation can induce advanced atherosclerotic lesion. Pentachrome staining of LCA of ApoE KO mice 4 to 6 weeks post-partial ligation and high fat diet showed robust cholesterol clefts and several remarkable intra-plaque neovessels (Fig. 4.11). These results show that at least some features of advanced lesions develop quickly within 4 to 6 weeks following partial ligation, providing additional unique advantage of our model in the study of atherosclerosis.


Figure 4.11 Partial ligation and high-fat diet induces features of advanced atherosclerosis in LCA. ApoE KO mice were partially ligated and fed high-fat diet for 4 weeks. Paraffin sections obtained from LCA and RCA were stained with Pentachrome. Note needle-shaped cholesterol clefts (*) and intraplaque neovessels (arrows) containing red blood cells.

## Discussion

Here, we characterized partial carotid ligation as a model of disturbed flow with low and oscillatory shear stress which causes endothelial dysfunction and accelerated atherosclerosis. We also describe a simple method of isolating intimal RNA from mouse carotid arteries. In this mouse model, we found that partial ligation of LCA causes 1) low and oscillatory shear, 2) upregulation of pro-atherogenic genes, 3) downregulation of anti-atherogenic genes, 4) endothelial dysfunction in ApoE KO mice in 1 week, 5) rapid atherosclerosis within 2 weeks in ApoE KO mice, and 6) advanced lesions by 4 weeks.

Partial ligation causes not only low shear stress but also oscillatory shear stress - two characteristics of patho-physiologically relevant disturbed flow associated with atherogenesis (3). Previously, Cheng et al. used peri-vascular cuff model to create 3
distinct regions of shear stress: lower shear (100 dynes/cm ${ }^{2}$ ), higher shear (250 dynes $/ \mathrm{cm}^{2}$ ), or oscillatory shear ( 140 dynes $\left./ \mathrm{cm}^{2}\right)^{22}$. Using $15-20$ week old ApoE KO mice fed an atherogenic diet for minimum of 8 weeks; they demonstrated that lower shear was more atherogenic than oscillatory shear, although flow oscillation was not directly demonstrated in their mouse model ${ }^{22}$. It should be noted, however, that typical atheroprone regions in carotid bifurcations and aortic arches are exposed to disturbed flow characterized by co localization of both low and oscillatory shear stress ${ }^{4-5}, 17$. Perhaps one reason that our partial ligation induced atherosclerosis much faster than the perivascular cuff model is that LCA is exposed to both low and oscillatory shear in our partial ligated artery while peri-vascular cuff exposes LCA to either low or oscillatory shear, but not both. Complete ligation of carotid artery ${ }^{20}$ has also been used to induce rapid atherosclerosis ${ }^{19}$. However, its patho-physiologic relevance is debated as it is a model of no flow and likely does not mimic disturbed flow with low and oscillatory shear ${ }^{21}$. We propose that partial ligation model provides a physiologically relevant model well-suited for the study of atherosclerosis induced by disturbed flow.

Intra-plaque neo-vessel formation and cholesterol clefts are important features of advanced atherosclerotic lesions ${ }^{30}$. In our model, Pentachrome staining revealed numerous large vascular structures containing red blood cells within the plaque. It is interesting to note that many of these intra-plaque neo-vessels were found near internal elastic lamina, consistent with a previous report showing that intra-plaque hemorrhage in innominate artery of 60 week old ApoE KO mice occurred in similar region ${ }^{31}$. In addition, we observed abundant needle-like cholesterol clefts within the plaque, providing further evidence of advanced lesions. This could serve as a very useful model to study the mechanisms underlying intra-plaque neo-vascularization and its importance in atherosclerosis.

Here we describe a simple method of isolating intimal RNA from carotid arteries in sufficient quantity with virtually no appreciable contamination from underlying media and adventitia. Intimal RNA obtained by this method is nearly free of medial smooth muscle RNA contamination. Previous efforts to isolate intimal RNA from athero-prone and athero-protected areas of vasculature have been reported using a scrapping method ${ }^{32}$. However, we found our method of simply flushing the carotid artery with lysis reagent easier and highly reproducible. Having our partial ligation model, which exposes the entire length of the common carotid artery to disturbed flow, enabled us to apply this easy method of endothelial RNA isolation. This method could easily be applied to obtain sufficient quantities of RNA for high through-put genome wide studies including DNA microarray and microRNA array.

We applied this method to study mechanisms by which disturbed flow induces endothelial dysfunction and atherosclerosis. By comparing endothelial RNA from LCA and RCA, we found that partial ligation downregulated expression of anti-atherogenic genes such as eNOS and KIf-2 while upregulating pro-atherogenic genes such as ICAM1, VCAM-1 and BMP4. These gene expression changes are consistent with known endothelial responses to disturbed flow in vitro and in vivo ${ }^{9-14}$

We believe that this is the first report demonstrating that acute induction of disturbed flow in vivo causes endothelial dysfunction. It was reported previously that endothelial dysfunction could be induced in carotid arteries of ApoE KO mice by feeding a Western diet for more than 26 weeks $^{33}$. By comparison, our model impairs vasorelaxation response within one week, providing a rapid and useful model to study flow-dependent endothelial dysfunction.

In conclusion, we characterized partial carotid ligation as a model acutely induced disturbed flow which results in accelerated endothelial dysfunction and atherosclerosis and allows for simple method of intimal RNA isolation. These could be used in ApoE, LDL receptor KO, or other transgenic mice to further study molecular mechanisms underlying flow-dependent regulation of vascular biology and disease, such as neovascularization and atherosclerosis. Moreover, this in vivo model could be used to test various therapeutic interventions targeting endothelial dysfunction and atherosclerosis in considerably reduced study duration.

## References

1. Ross R. Atherosclerosis--an inflammatory disease. N Engl J Med. 1999;340:115126
2. Libby P. Inflammation in atherosclerosis. Nature. 2002;420:868-874
3. Ku DN, Giddens DP, Zarins CK, Glagov S. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis. 1985;5:293-302
4. VanderLaan PA, Reardon CA, Getz GS. Site specificity of atherosclerosis: Siteselective responses to atherosclerotic modulators. Arterioscler Thromb Vasc Biol. 2004;24:12-22
5. Chatzizisis YS, Coskun AU, Jonas M, Edelman ER, Feldman CL, Stone PH. Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling: Molecular, cellular, and vascular behavior. J Am Coll Cardiol. 2007;49:2379-2393
6. Jo H, Song H, Mowbray A. Role of nadph oxidases in disturbed flow- and bmp4induced inflammation and atherosclerosis. Antioxidants \& redox signaling. 2006;8:1609-1619
7. Berk BC. Atheroprotective signaling mechanisms activated by steady laminar flow in endothelial cells. Circulation. 2008;117:1082-1089
8. Davies PF. Flow-mediated endothelial mechanotransduction. Physiological reviews. 1995;75:519-560
9. Chang K, Weiss D, Suo J, Vega JD, Giddens D, Taylor WR, Jo H. Bone morphogenic protein antagonists are coexpressed with bone morphogenic protein 4 in endothelial cells exposed to unstable flow in vitro in mouse aortas and in human coronary arteries: Role of bone morphogenic protein antagonists in inflammation and atherosclerosis. Circulation. 2007;116:1258-1266
10. Cheng C, van Haperen R, de Waard M, van Damme LC, Tempel D, Hanemaaijer L, van Capellen GW, Bos J, Slager CJ, Duncker DJ, van der Steen AF, de Crom R, Krams R. Shear stress affects the intracellular distribution of enos: Direct demonstration by a novel in vivo technique. Blood. 2005
11. Davis ME, Cai H, Drummond GR, Harrison DG. Shear stress regulates endothelial nitric oxide synthase expression through c-src by divergent signaling pathways. Circ Res. 2001;89:1073-1080
12. SenBanerjee S, Lin Z, Atkins GB, Greif DM, Rao RM, Kumar A, Feinberg MW, Chen Z, Simon DI, Luscinskas FW, Michel TM, Gimbrone MA, Jr., GarciaCardena G, Jain MK. Klf2 is a novel transcriptional regulator of endothelial proinflammatory activation. The Journal of experimental medicine. 2004;199:1305-1315
13. Sorescu GP, Sykes M, Weiss D, Platt MO, Saha A, Hwang J, Boyd N, Boo YC, Vega JD, Taylor WR, Jo H. Bone morphogenic protein 4 produced in endothelial cells by oscillatory shear stress stimulates an inflammatory response. J Biol Chem. 2003;278:31128-31135
14. Dekker RJ, van Soest S, Fontijn RD, Salamanca S, de Groot PG, VanBavel E, Pannekoek H, Horrevoets AJ. Prolonged fluid shear stress induces a distinct set of endothelial cell genes, most specifically lung kruppel-like factor (klf2). Blood. 2002;100:1689-1698
15. Dai G, Kaazempur-Mofrad MR, Natarajan S, Zhang Y, Vaughn S, Blackman BR, Kamm RD, Garcia-Cardena G, Gimbrone MA, Jr. Distinct endothelial phenotypes evoked by arterial waveforms derived from atherosclerosis-susceptible and resistant regions of human vasculature. Proc Natl Acad Sci U S A. 2004;101:14871-14876
16. McCormick SM, Eskin SG, McIntire LV, Teng CL, Lu CM, Russell CG, Chittur KK. DNA microarray reveals changes in gene expression of shear stressed human umbilical vein endothelial cells. Proc Natl Acad Sci U S A. 2001;98:89558960
17. Suo J, Ferrara DE, Sorescu D, Guldberg RE, Taylor WR, Giddens DP. Hemodynamic shear stresses in mouse aortas: Implications for atherogenesis. Arterioscler Thromb Vasc Biol. 2007;27:346-351
18. Paigen B, Morrow A, Holmes PA, Mitchell D, Williams RA. Quantitative assessment of atherosclerotic lesions in mice. Atherosclerosis. 1987;68:231-240
19. Khatri JJ, Johnson C, Magid R, Lessner SM, Laude KM, Dikalov SI, Harrison DG, Sung HJ, Rong Y, Galis ZS. Vascular oxidant stress enhances progression and angiogenesis of experimental atheroma. Circulation. 2004;109:520-525
20. Kumar A, Lindner V. Remodeling with neointima formation in the mouse carotid artery after cessation of blood flow. Arterioscler Thromb Vasc Biol. 1997;17:2238-2244
21. Xu Q. Mouse models of arteriosclerosis: From arterial injuries to vascular grafts. Am J Pathol. 2004;165:1-10
22. Cheng C, Tempel D, van Haperen R, van der Baan A, Grosveld F, Daemen MJ, Krams R, de Crom R. Atherosclerotic lesion size and vulnerability are determined by patterns of fluid shear stress. Circulation. 2006;113:2744-2753
23. Sullivan CJ, Hoying JB. Flow-dependent remodeling in the carotid artery of fibroblast growth factor-2 knockout mice. Arterioscler Thromb Vasc Biol. 2002;22:1100-1105
24. Korshunov VA, Berk BC. Flow-induced vascular remodeling in the mouse: A model for carotid intima-media thickening. Arterioscler Thromb Vasc Biol. 2003;23:2185-2191
25. Zhou J, Lhotak S, Hilditch BA, Austin RC. Activation of the unfolded protein response occurs at all stages of atherosclerotic lesion development in apolipoprotein e-deficient mice. Circulation. 2005;111:1814-1821
26. Lessner SM, Prado HL, Waller EK, Galis ZS. Atherosclerotic lesions grow through recruitment and proliferation of circulating monocytes in a murine model. Am J Pathol. 2002;160:2145-2155
27. Miriyala S, Gongora Nieto MC, Mingone C, Smith D, Dikalov S, Harrison DG, Jo H. Bone morphogenic protein-4 induces hypertension in mice: Role of noggin, vascular nadph oxidases, and impaired vasorelaxation. Circulation. 2006;113:2818-2825
28. Ziegler T, Bouzourene K, Harrison VJ, Brunner HR, Hayoz D. Influence of oscillatory and unidirectional flow environments on the expression of endothelin and nitric oxide synthase in cultured endothelial cells. Arterioscler Thromb Vasc Biol. 1998;18:686-692
29. Chappell DC, Varner SE, Nerem RM, Medford RM, Alexander RW. Oscillatory shear stress stimulates adhesion molecule expression in cultured human endothelium. Circ Res. 1998;82:532-539
30. Doyle B, Caplice N. Plaque neovascularization and antiangiogenic therapy for atherosclerosis. J Am Coll Cardiol. 2007;49:2073-2080
31. Rosenfeld ME, Polinsky P, Virmani R, Kauser K, Rubanyi G, Schwartz SM. Advanced atherosclerotic lesions in the innominate artery of the apoe knockout mouse. Arterioscler Thromb Vasc Biol. 2000;20:2587-2592
32. Won D, Zhu SN, Chen M, Teichert AM, Fish JE, Matouk CC, Bonert M, Ojha M, Marsden PA, Cybulsky MI. Relative reduction of endothelial nitric-oxide synthase expression and transcription in atherosclerosis-prone regions of the mouse aorta and in an in vitro model of disturbed flow. The American journal of pathology. 2007;171:1691-1704
33. d'Uscio LV, Baker TA, Mantilla CB, Smith L, Weiler D, Sieck GC, Katusic ZS. Mechanism of endothelial dysfunction in apolipoprotein e-deficient mice. Arterioscler Thromb Vasc Biol. 2001;21:1017-1022

## CHAPTER 5

## DISCOVERY OF NOVEL MECHANOSENSITIVE GENES USING IN VIVO MODEL OF MOSUE CAROTID ENDOTHELIUM EPXOSED TO DISTURBED FLOW

## Summary

We have shown in Chapter 4 that disturbed flow caused by partial ligation of mouse carotid artery rapidly induces endothelial dysfunction and atherosclerosis in one and two weeks, respectively. Using this acute in vivo model, we identified mechanosensitive genes in partially ligated mouse arterial endothelium to understand the mechanism by which disturbed flow induces atherosclerosis. Genome-wide microarray study was carried out using endothelial RNAs isolated from the flow-disturbed left and the undisturbed right common carotid artery (LCA and RCA) in C57BL/6 mice. We found 62 and 523 genes that changed significantly in LCA endothelium compared to the RCA by 12 hr and 48 hr post-ligation. The array results for 44 genes of 46 were validated by qPCR including well-known shear-responsive genes, KIf2, eNOS, and BMP4, and numerous novel mechanosensitive genes including Lmo4, klk10 and dhh. Lmo4 protein was specifically expressed in the flow-disturbed mouse aortic arch and in human coronary endothelium in an asymmetric pattern. Comparison of in vivo, ex vivo, and in vitro endothelial gene expression profiles indicates that numerous in vivo mechanosensitive genes appear to be lost or dysregulated during culture. Gene ontology analyses show that disturbed flow regulates genes involved in cell proliferation and morphology by 12 hr , followed by inflammatory and immune responses by 48hr. In
vivo genome-wide array study using mouse aortic endothelium reveals numerous novel mechanosensitive genes, while confirming previously well-characterized ones. Determining functional importance of these novel mechanosensitive genes may provide important insights into understanding vascular biology and atherosclerosis.

## Introduction

Atherosclerosis is an inflammatory disease ${ }^{1-2}$ preferentially occurring in arterial regions exposed to disturbed flow characterized by low and oscillatory shear stress, whereas straight arterial regions exposed to stable flow are protected from atherosclerosis ${ }^{3-4}$. Despite the close association between the two, in vivo evidence directly linking disturbed flow conditions to atherosclerosis has been scarce.

The differential mechanisms by which disturbed and stable flow promotes and inhibits atherogenesis, respectively, have been a subject of intense study, mostly using cultured endothelial cells ${ }^{5-8}$. To define molecular mechanisms responsible for these changes, investigators have carried out DNA microarray studies using endothelial cells ${ }^{9-17}$ and have subsequently identified numerous shear sensitive genes such as kruppel-like factor 2 and 4 (Klf2, Klf4), endothelial nitric oxide synthase (eNOS), vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), bone morphogenic protein 4 (BMP-4), cathepsins and angiopoietin-2 (Angpt2) ${ }^{11,14,18-26}$ Functional studies based on these shear-sensitive genes and their protein products have revealed the critical roles that they play in regulation of inflammation, thrombosis, vascular remodeling, angiogenesis and arteriogenesis ${ }^{11,19-22,26-27}$. While these in vitro studies have provided critical insights regarding shear sensitive mechanisms in cultured endothelial cells using modeled flow conditions, it cannot be assumed whether identical mechanosensitive
genes and pathways are involved in vivo regulating flow-dependent vascular responses and diseases. In addition, given the exquisite sensitivity of endothelial gene expression to various flow conditions, it is quite plausible that many genes could be dysregulated (lost, overexpressed, or modified) during cell culture which is carried out under no-flow condition for extended period. Therefore, it is critical to study how arterial endothelium responds to different flow conditions in vivo. However, the adequate pathophysiological animal models enabling acute and reproducible modulation of flow conditions that rapidly lead to atherosclerosis have been lacking.

Recently, we characterized partial carotid ligation as a model of disturbed flow with characteristics of low and oscillatory wall shear stress. Using this model, we showed that disturbed flow caused by carotid partial ligation rapidly induces endothelial dysfunction (by 1 week), robust atheroma formation (by two weeks), and features of advanced lesions such as intraplaque neovascularization (by 4 weeks) in hyperlipidemic mice, directly demonstrating the causal relationship between disturbed flow and atherosclerosis ${ }^{28}$ In addition, using carotid arteries of the same mouse model, we developed a novel method of obtaining endothelial RNA samples that are nearly free of contamination of smooth muscle cells and leukocytes ${ }^{28}$. Using this method and the partially ligated mouse carotid arteries, we have shown by qPCR studies that disturbed flow induces pro-inflammatory genes, ICAM1, VCAM1, and BMP4, while significantly down-regulating pro-atherogenic genes KIf2 and eNOS within two days ${ }^{28}$. These findings not only provided the proof-of-concept that disturbed flow rapidly regulates mechanosensitive gene expression, but also demonstrated that sufficient quantity of endothelial RNA could be obtained for genome-wide microarray studies.

Here, we indeed carried out DNA microarray studies using endothelial RNAs obtained from flow-disturbed left common carotid arterial (LCA) and contralateral, undisturbed
right CA (RCA) after 12 or 48hr partial ligation in mice. These results were validated by qPCR and immunostaining. Gene ontology analyses were further carried out demonstrating that disturbed flow initially regulates genes involved in cell proliferation and morphogenesis, followed by regulation of genes controlling inflammation and immune responses at a later time point. Based on the number of genes we confirmed (42 genes), our results predict approximately $55 \%$ of the mechanosensitive genes found in our in vivo studies are also found in various in vitro studies, but the remaining 45\% seems to be dysregulated. While the similarity between the in vitro and in vivo results demonstrate the validity and complementary nature of both systems, the significant difference between them, especially the dysregulated or lost genes in cultured endothelial cells, highlights the critical importance of in vivo models in studying flowdependent vascular biology and atherosclerosis.

## Methods

## Partial carotid ligation and flow characterization by ultrasound study

All animal studies were performed with Male C57BI/6 mice according to the approved IACUC protocol by Emory University. Mice (Jackson Laboratories) were partially ligated between 6 to 8 weeks of age as we recently described ${ }^{28}$. Briefly, three of four caudal branches of left common carotid artery (LCA) - left external carotid, internal carotid, and occipital artery - were ligated with 6-0 silk suture while the superior thyroid artery was left intact in anesthetized mice. Six hours post-surgery, each animal was examined by VEVO 770 High-resolution in vivo micro-imaging ultrasound system whether the ligation induced low and oscillatory shear stress in LCA with the contralateral RCA as a control 28

Total RNA from intima were separately obtained from LCA and RCA at 12, 24 and 48 hr post-ligation as we described previously ${ }^{28}$. Briefly, LCA and RCA were quickly flushed (few seconds) with 150 I of QIAzol lysis reagent (QIAGEN) using 29G insulin syringe into a microfuge tube. The eluate was then used for total intimal RNA isolation using miRNeasy mini kit (QIAGEN).

## Microarray Procedures

Total intimal RNAs were obtained from LCA and RCA at 12 hr and 48 hr post-ligation. Intimal RNAs from three LCAs or RCAs were pooled to obtain $\sim 30 \mathrm{ng}$ total RNA. All RNA samples used for the microarray study passed a quality control test using Agilent BioAnalyze NanoChip. Each sample was linearly amplified by WT-Ovation RNA amplification system (NuGEN) and used for the microarray study using MouseWG-6 v2 Expression BeadChip array with 45,281 probes (Illumina) at the Emory Biomarker Service Center. After hybridization, BeadChips are scanned on the Illumina BeadArray Reader to determine the probe fluorescence intensity. The raw probe intensities were then normalized by the quantile normalization algorithm ${ }^{29}$ using the GenomeStudio software from Illumina.

## Microarray Data Analysis and Bioinformatics

The microarray data was statistically analyzed by Significance Analysis of Microarrays software (SAM) ${ }^{30}$. The differentially expressed genes between LCA and RCA were identified for those which showed more than 1.5 fold-changes at <10\% false discovery rate. The lists of differentially expressed genes were interrogated for statistically significant overrepresented cellular functions and disorders using DAVID analysis and Ingenuity Pathway (IPA) Analysis (Ingenuity Systems).

## Quantitative real time PCR (qPCR) validation

Total RNA of each sample was reverse transcribed into cDNA using SuperScript III and random primers (Invitrogen) as we described ${ }^{28}$. Briefly, qPCR was performed on selected genes using Brilliant II SYBR Green QPCR Master Mix (Stratagene) with custom designed primers on a Real-Time PCR System (ABI StepOne Plus). Predesigned TaqMan Gene Expression Assay probes (Applied Biosystems) were also used for some selected genes. All qPCR results were normalized based on 18S RNA expression in each sample. Fold changes between LCA and RCA were determined using the $\Delta \Delta$ Ct method ${ }^{31}$.

## Immunohistochemical staining

Paraffin section immunostaining - Mice were euthanized by $\mathrm{CO}_{2}$ inhalation and then were pressure-perfused at 100 mmHg with normal saline followed by pressure fixation with a $10 \%$ formalin solution. LCA and RCA were collected en block with the trachea and esophagus. Paraffin sections ( $5 \mu \mathrm{~m}$ ) were then microwaved for 20 min in citrate buffer (0.1 M, pH 6.0) for BMP4 and Lmo4 staining or in Tris buffer ( $0.1 \mathrm{M}, \mathrm{pH} 9.0$ ) for Angpt2 and Jam2 staining. Sections were blocked with $10 \%$ donkey serum for 1 hour at room temperature and incubated with primary antibodies specific to BMP4 ( $5 \mu \mathrm{~g} / \mathrm{ml}$, Biovision), Lmo4 ( $5 \mu \mathrm{~g} / \mathrm{ml},{ }^{32-34}$ ), Jam2 ( $2 \mu \mathrm{~g} / \mathrm{ml}$, R\&D System), and Angpt2 ( $0.4 \mu \mathrm{~g} / \mathrm{ml}$, Santa Cruz) overnight at $4^{\circ} \mathrm{C}$ in a humidified chamber ${ }^{18}$. To visualize primary antibodies, rhodamineconjugated secondary antibodies (donkey anti-goat, anti-rat lgG, Jackson) were used for one hour at room temperature. Nuclei were counter stained with Hoechst \#33258. All photographs were taken using a Zeiss epi-fluorescent microscope. Paraffin sections of human coronary arteries from patients undergoing heart transplants were obtained with
the patients' consent according to the IRB protocol approved at Emory as described previously ${ }^{18}$. The same staining method used for mouse carotids as described above was used for Lmo4 staining.

En Face staining - Mice were euthanized by $\mathrm{CO}_{2}$ inhalation and the aortas were pressure-perfused at 100 mmHg with normal saline followed by pressure fixation with a $10 \%$ formalin solution. The aortas were carefully dissected in situ and the aortic arches and thoracic aortas were dissected and stained with Lmo4 antibody ${ }^{32-34}$, followed by rhodamine-conjugated secondary antibodies for 2 hours at room temperature. The aortas were then mounted on glass slides using Vectashield containing DAPI (Vector Laboratories). They were then opened and lesser curvature and the greater curvature of the arch were separated. En face images were obtained using a Zeiss LSM 510 META confocal microscope.

## Ex vivo tissue culture

Mice were euthanized by $\mathrm{CO}_{2}$ inhalation and then pressure-perfused with heparinized normal saline. Under sterile conditions, common carotid arteries were harvested and carefully cleaned of perivascular fat. Carotid artery rings ( $\sim 3 \mathrm{~mm}$ ) and incubated for 3 to 5 days at $37{ }^{\circ} \mathrm{C}$ and $5 \% \mathrm{CO}$ in Dulbecco's Modified Eagle Medium (DMEM) supplemented with $100 \mathrm{U} / \mathrm{mL}$ of penicillin and $100 \mu \mathrm{~g} / \mathrm{mL}$ of streptomycin and $10 \%$ of heat-inactivated fetal bovine serum.

## Statistical analysis

Data are presented as mean $\pm$ SEM. Paired Student's $t$-test was carried out for all qPCR results of each gene to compare LCA vs. RCA and $p<0.05$ ( $n=3-5$ ) was considered statistically significant.

## Results

Discovery of mechanosensitive genes regulated by disturbed flow in mouse carotid endothelium in vivo.

We carried out a DNA microarray study using Illumina BeadChip array containing 45,281
mouse gene probes and endothelial RNAs obtained from the flow-disturbed LCA and


Figure 5.1 Global gene expression profiles in response to disturbed flow in mouse carotid artery endothelium in vivo. Total RNAs were obtained from intima of mouse left carotid (flow-disturbed LCA) and right carotid (contralateral control, RCA) 12 and 48 hrs post-ligation. Illumina BeadsChips containing 45,281 mouse genome-wide probes were used for the array study. Scatter plots show normalized intensities of each probe under two experimental conditions: LCA vs. RCA at 12hr (A) and $48 \mathrm{hr}(\mathrm{B})$ post-ligation. Genes that were up- (red) or down-regulated (Blue) ( $\geq 1.5$ fold) at the false discovery rate (FDR) ( $\leq 10 \%$ ) in LCA compared to RCA are shown. Hierarchical clustering analyses of mechanosensitive genes found in LCA endothelium compared to that of RCA are shown as heat maps (C and D). Each column represents a single sample pooled from 3 different LCAs or RCAs, and each row represents a single gene probe. Venn diagrams show the temporal effects of disturbed flow on the number of up or down-regulated mechanosensitive genes (E).
contralateral RCA at 12 and 48 hrs following the partial ligation of LCA of C57BL/6 mice. The array results of detected probes were analyzed by the SAM analysis. We found that 67 (29 up- and 38 down-regulated) out of 45,281 gene probes were significantly altered by more than $50 \%$ in flow-disturbed LCA endothelium compared to the RCA by 12 hr post-surgery at 10\% FDR (Figure 5.1A). By 48 hrs, 588 gene probes (250 up- and 338 down-) were regulated in LCA endothelium compared to the RCA at 10\% FDR (Figure. 5.1B). The array data were deposited to Gene Expression Omnibus (GSE 20741). Next, the significantly altered gene probes in individual samples were analyzed by hierarchical clustering to examine the intra- and inter-group variations. As shown in the heat maps (Figure 5.1C and D), the results showed remarkably low variations within each group in both time points, demonstrating the reproducibility of the data. Since a single gene can be represented by multiple gene probes, the number of mechanosensitive genes is smaller than the number of detected probes. By $12 \mathrm{hrs}, 27$ genes were up- while 35 genes were down-regulated in LCA endothelium (Figure 5.1E). In contrast, by $48 \mathrm{hrs}, 228$ genes were up- and 295 genes were down-regulated in LCA endothelium (Figure 5.1E). As the Venn diagrams show (Figure 5.1E), 5 of the 27 genes that were upregulated in the LCA endothelium at the early time point (12 hr) continued to be upregulated in the later time point ( 48 hr ). These 5 genes are Ctgf, Ctps, Fos/2, Got2 and Lmo4. In contrast, 24 of 35 genes that were down-regulated at the early time point continued to be down-regulated at the later time point. These genes (Table S2) include some of the well-known shear sensitive genes such as KIf2 and KIf4, while the majority of them have never been reported previously as mechanosensitive genes ${ }^{11,20,26}$. These results demonstrated that in vivo microarray study not only confirmed some of the wellknown shear-sensitive genes reported previously, but also discovered numerous novel mechanosensitive genes.

We validated the microarray results by two different methods of qPCR. We selected 46 genes (10 up-, 30 down-regulated genes plus 6 additional genes of interests although they were not significantly changed at 48 hr post-ligation) and tested by qPCR assay with either Taqman (28 genes) or SYBR Green (18 genes) method using total endothelial RNAs obtained from LCAs or RCAs collected at three different time points ( $12 \mathrm{hr}, 24 \mathrm{hr}$, and 48 hr post-ligation). These RNAs used for qPCR validation were entirely independent from those used in the microarray study. First, our qPCR results validated the microarray results for the 48 hr time point for the 10 up- and 30 -down regulated genes (Figure 5.2 A vs. B and C vs. D). For 12 hr time point, 3 significantly upregulated genes (Ctgf, Ctps, and Lmo4) were all confirmed by qPCR assays (Figure. 5.2 A,B). In addition, 13 genes that were significantly down-regulated at 12 hr in the microarray study were also validated by the qPCR analysis (Figure. 5.2 C, D). These results demonstrate the superb accuracy of microarray results with few false positives. There were, however, some genes at 12 hr time point that were not shown to be significantly changed according to the array results, but qPCR results showed that they were significantly changed. These include Hdc, Coro1a, and Tyrobp (Figure 5.2B) and those marked with * including Col4a3, Pthlh, Ramp2 (Figure 5.2D). This suggests that our microarray result using $10 \%$ FDR underestimated the number of mechanosensitive genes that changed significantly. Therefore, we selected 6 additional genes of interests which did not change significantly according to the microarray result. For example, Angpt2, BMP4, and ICAM1 were previously identified as mechanosensitive genes ${ }^{19,21-22,27}$, but were not included in the list of the significantly changed genes by the microarray (Figure 5.2E). qPCR results showed that Angpt2, BMP4 and ICAM1 were all significantly upregulated at 24 hr post-ligation and showed similar trend at 48 hr (Figure 5.2E). Overall, to our
complete but pleasant surprise, we were able to validate 16 out of 16 genes at 12 hr and


Figure 5.2 Validation of mechanosensitive genes by qPCR. Total RNAs from intima of LCA or RCA at different time points (12hr, 24hr, and 48hr) after ligation were collected. Differentially expressed genes were selected for qPCR analyses based on 48 hr microarray results. Each RNA sample at each time was pooled from 3 different mouse carotid, representing total of $9(n=3)$ to $15(n=5)$ mice. Microarray results for 12 and 48 hr time points are shown as fold-increase (A) or fold-decrease (C) of genes expressed in LCA over $R C A$ in $\log 2$ scale are shown as mean $\pm$ SEM ( $n=3$ ). All genes shown in the graphs were significant at $F D R<10 \%$ at 48 hr , while those genes marked with ${ }^{\ddagger}$ were also statistically significant ( $F D R<10 \%$ ) at 12hr. qPCR validation results for 12, 24, and 48 hr time points are shown as fold-increase (B) or fold-decrease ( $\mathbf{D}$ ) of genes expressed in LCA over RCA in log2 scale are shown as mean $\pm$ SEM ( $n=3-5$ ). All genes shown in the graphs were significant ( $p<0.05$ ) at 48hr, while those genes marked with * were also statistically significant ( $p<0.05$ ) at 12 and 48 hrs. In E, 6 genes of interests that did not reach statistical significance (>10\% FDR) were examined by qPCR. Shown are mean $\pm$ SEM ( $n=3$ ), $\ddagger<10 \%$ $F D R$ (LCA vs. RCA) and ${ }^{*}<0.05$ (LCA vs. RCA).

## Functional annotation and categorization of mechanosensitive genes

To understand the potential functional importance of the mechanosensitive genes that changed in response to disturbed flow in mouse carotid endothelium, we used the list of the significantly changed genes at 12 and 48 hr groups from the microarray result for functional annotation analysis. Ingenuity Pathway analysis showed that disturbed flow for 12 hrs regulated genes that are involved in the disease processes such as developmental disorder, cancer, immunological and cardiovascular diseases that are mediated through changes in cell growth, proliferation, development, and morphology (Table 5.1). By 48 hrs, disturbed flow induced genes that are involved in inflammatory and immunological diseases while regulating cellular responses such as antigen presentation, cellular movement, and cell-cell signaling (Table 5.1).

Table 5.1. Overrepresented Gene Ontology categories regulated by flow-disturbance in mouse carotid endothelium
12hr post-ligation No. of Genes 48 hr post-ligation No. of Genes

| Diseases and Disorders | Diseases and Disorders |  |  |
| :--- | :---: | :--- | :--- |
| Developmental Disorder | 10 | Immunological Disease | 40 |
| Cancer | 9 | Inflammatory Response | 75 |
| Immunological Disease | 4 | Connective Tissue Disorders | 22 |
| Cardiovascular Disease | 6 | Inflammatory Disease | 36 |
| Respiratory Disease | 4 | Skeletal and Muscular Disorders | 34 |


| Molecular and Cellular Functions | Molecular and Cellular Functions |  |  |
| :--- | :---: | :--- | :--- |
| Cellular Growth and Proliferation | 12 | Cellular Movement | 70 |
| Cellular Development | 20 | Cell-To-Cell Signaling and Interaction | 76 |
| Cell Morphology | 12 | Antigen Presentation | 30 |
| Cellular Function and Maintenance | 6 | Cellular Function and Maintenance | 44 |
| Cell Cycle | 4 | Cellular Growth and Proliferation | 73 |

Top mechanosensitive genes that are involved in inflammation and cell growth and proliferation are listed in Table 5.2. These include inflammatory cytokines (Ccl11, Ccl4, Cxcl12, and Cxcl16), adhesion molecules (SELL and VCAM1), and transcription factors (Klf2, Klf4, and Fos/2) and morphogens (Id1 and BMP4). These results suggested that disturbed flow initially induces genes that regulate cell morphogenesis and proliferation, followed by those that regulate inflammatory and immune responses in the later time point.

Table 5.2 Flow-regulated genes involved in inflammation and cell growth and proliferation in mouse carotid endothelium


Comparison of microarray data between the in vivo mouse carotid endothelium and in vitro cultured endothelial cells

We next determined whether the 42 validated mechanosensitive genes from mouse carotid endothelium in vivo behaved similarly in cultured endothelium in vitro. For this study, we compared the in vivo mouse microarray and qPCR results to the microarray results of HUVEC exposed to oscillatory shear as opposed to laminar shear for 1 day. Since it is well-known that microarray results obtained by different laboratories significantly vary ${ }^{35}$, we first compared our mouse array result obtained by using the mouse Illumina BeadChip array to that of HUVEC microarray using the human Illumina BeadChip array as we recently reported (GSE20739). As shown in Table 5.3, several mechanosensitive genes (e.g. Klf2, KIf4, NOS3, VCAM1, Ctgf, Angpt2 and BMP4) in mouse carotid endothelium were also found in the HUVEC microarray results. Of 42 mechanosensitive genes compared here, 23 genes (55\%) showed similar responses between the mouse LCA endothelium and OS-exposed HUVEC. Of the remaining 19, 6 genes (14\%) were not detected in cultured HUVEC while 13 genes (31\%) showed either no change or opposite trends. We hypothesized that those 6 undetectable genes in HUVEC were lost during culture under static condition. To test this hypothesis, we incubated mouse carotid arteries ex vivo for 0,3 and 5 days under sterile conditions, and examined endothelial mRNA levels by qPCR. Klk10 (down-regulated gene in LCA) became undetectable by 3 days of culture. In contrast, Lmo4 (up-regulated in LCA) levels did not change significantly in the same samples, while Klf2 and Dhh (downregulated in LCA) were decreased but still detectable at 3 and 5 days during culture (Figure 5.3).

Table 5.3. Comparison of flow-sensitive genes found in vivo mouse carotid endothelium to cultured HUVEC

|  |  | Carotid | Carotid | HUVEC |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Gene | Gene Name | 48 hr | 48 hr | 24 hr |  |
| Symbol |  | (LCA/RCA) | (LCA/RCA) | (OS/LS) | Congruency |
|  |  | microarray | qPCR | microarray |  |

## Downregulated (LCA/RCA)

| KLK10 | kallikrein related-peptidase 10 | 0.10 | 0.01 | ND | N |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Col4a3 | collagen, type IV, alpha 3 | 0.22 | 0.11 | ND | N |
| Bcam | basal cell adhesion molecule | 0.23 | 0.10 | 0.81 | Y |
| Pthlh | parathyroid hormone-like peptide | 0.24 | 0.08 | 0.06 | Y |
| Rhpn2 | rhophilin, Rho GTPase binding protein 2 | 0.26 | 0.12 | 1.52 | N |
| KLF2 | kruppel-like factor 2 | 0.27 | 0.06 | 0.37 | Y |
| Dusp8 | dual specificity phosphatase 8 | 0.27 | 0.12 | 0.70 | Y |
| KLF4 | kruppel-like factor 4 | 0.28 | 0.06 | 0.12 | Y |
| IGF2 | insulin-like growth factor 2 | 0.29 | 0.15 | 0.78 | Y |
| Slc9a3r2 | solute carrier family 9 (sodium/hydrogen exchanger), member 3 regulator 2 | 0.32 | 0.11 | 0.22 | Y |
| Ptprj | protein tyrosine phosphatase, receptor type, J | 0.33 | 0.13 | ND | N |
| Mfap5 | microfibrillar associated protein 5 | 0.33 | 0.13 | 0.94 | N |
| Dhh | desert hedgehog | 0.36 | 0.11 | 0.16 | Y |
| Emp2 | epithelial membrane protein 2 | 0.40 | 0.22 | 1.09 | N |
| Lims2 | LIM and senescent cell antigen like domains 2 | 0.40 | 0.09 | 0.45 | Y |
| Jam2 | junction adhesion molecule 2 | 0.40 | 0.17 | 0.45 | Y |
| Pak4 | p21 (CDKN1A)-activated kinase 4 | 0.42 | 0.36 | 0.78 | Y |
| Ramp2 | receptor (calcitonin) activity modifying protein 2 | 0.44 | 0.16 | 0.33 | Y |
| NOS3 | nitric oxide synthase 3 | 0.46 | 0.28 | 0.25 | Y |
| ICAM2 | intercellular adhesion molecule 2 | 0.48 | 0.19 | 1.04 | N |
| Plek2 | pleckstrin 2 | 0.50 | 0.24 | 0.52 | Y |
| Epas1 | endothelial PAS domain protein 1 | 0.50 | 0.20 | 0.59 | Y |
| Ankrd25 | ankyrin repeat domain 25 | 0.52 | 0.22 | ND | N |
| Sgcd | sarcoglycan, delta | 0.52 | 0.16 | 0.97 | N |
| Tek | endothelial-specific receptor tyrosine kinase | 0.53 | 0.23 | 0.30 | Y |
| Timp3 | tissue inhibitor of metalloproteinase 3 | 0.55 | 0.30 | 1.26 | N |
| Arhgef15 | Rho guanine nucleotide exchange factor (GEF) 15 | 0.60 | 0.29 | 1.12 | N |
| Cyb5r3 | cytochrome b5 reductase 3 | 0.61 | 0.40 | 0.71 | Y |
| Plec1 | plectin 1 | 0.62 | 0.36 | 0.50 | Y |
| Rab11fip5 | RAB11 family interacting protein 5 (class I) (Rab11fip5), transcript variant 1 | 0.65 | 0.56 | 0.73 | Y |

## Upregulated (LCA/RCA)

| Angpt2 | angiopoietin 2 | 8.44 | 7.81 | 4.53 | Y |
| :--- | :--- | :--- | :--- | :--- | :---: |
| Ctgf | connective tissue growth factor | 6.00 | 22.88 | 3.87 | Y |
| Cd300a | CD300A antigen | 4.31 | 11.36 | ND | N |
| Tyrobp | TYRO protein tyrosine kinase binding protein | 3.64 | 37.05 | ND | N |
| Cxcl12 | chemokine (C-X-C motif) ligand 12 | 3.43 | 4.33 | 1.14 | N |
| Cxcl16 | chemokine (C-X-C motif) ligand 16 | 2.20 | 1.74 | 0.56 | N |
| Ctps | cytidine 5'-triphosphate synthase 2 | 1.98 | 1.64 | 1.63 | Y |
| Lmo4 | LIM domain only 4 | 1.70 | 1.87 | 1.18 | N |
| VCAM1 | vascular cell adhesion molecule 1 | 1.53 | 1.90 | 0.87 | N |
| BMP4 | Bone morphogenetic protein 4 | 1.37 | 1.25 | 4.57 | Y |
|  |  |  |  |  | $23 / 42$ |



Figure 5.3 Endothelial expression of KLF2, Dhh, and KLK10, but not Lmo4, decreased during ex vivo tissue culture. Mouse carotid rings were incubated ex vivo in a growth medium. Intimal RNAs were collected after 0,3 , and 5 days during culture. qPCR analyses were carried out to examine the mRNA levels of KLF2, Dhh, KLK10 and Lmo4. mRNA copy numbers were normalized against $18 S$ and were shown as mean $\pm$ SEM ( $n=3$ ), * $p<0.05$ (vs. Day 0 ).

Additional qPCR results using cultured HUVEC and iMAEC-WT further confirmed that KIk10 and Col4a3 genes were not detectable even under shear conditions (Figure 5.4, Figure 5.5). These results are consistent with the notion that expression of some mechanosensitive genes became low or undetectable in cultured endothelial cells, due at least in part, to their no-flow culture conditions.


Figure 5.4 Validation of shear-sensitive mRNAs in HUVEC by qPCR. Total RNAs were collected from HUVECs exposed to OS or LS for 24hr. qPCR analysis was then performed using SYBR green with custom designed primers. mRNA copy numbers were normalized against 18S and are shown as mean $\pm$ SEM ( $n=4$ ). $p^{*}<$ 0.05 (OS vs, LS). ND is not detectable in qPCR.


Figure 5.5 Validation of shear-sensitive mRNAs in iMAEC-WT by qPCR. Total RNAs were collected from iMAEC-WT exposed to OS or LS for 24hr. qPCR analysis was then performed taqman qPCR system with pre-designed primers. $m R N A$ copy numbers were normalized against 18 and are shown as mean $\pm$ SEM ( $n=4$ ). $p^{*}<0.05$ (OS vs, LS).

Validation of mechanosensitive genes at the protein level in mouse and human arterial endothelium

To further examine the validity of the mechanosensitive genes discovered in vivo, we examined protein expression levels of two newly identified mechanosensitive genes (Jam2 and Lmo4) and two previously known ones (Angpt2 and BMP4). Immunohistochemical staining confirmed that all four protein expression levels changed consistent to the mRNA results (Figure 5.6).


Figure 5.6 Disturbed flow in LCA decreases protein expression of Jam2, while upregulating Angpt2, BMP4, and Lmo4. C57BL/6 mice underwent partial ligation and LCA and RCA were collected 2 days post-ligation. Paraffin sections were stained with specific antibodies for Jam2 (A), Angpt2 (B), BMP4 (C) and Lmo4 (D). Nuclei were counterstained with Hoechst (blue). Arrows indicates the protein expression in endothelial cells and L indicates lumen. Images are representative of $n=4$ mice

Disturbed flow in LCA increased expression of Angpt2, BMP4 and Lmo4 proteins in endothelium, while decreasing Jam2 (Figure 5.6). In addition, Lmo4 expression was easily detected in the flow-disturbed lesser curvature (LC) region of aortic arch, but not in stable flow regions in the greater curvature (GC) and thoracic aorta (TA) in C57BL/6 mice (Figure 5.7). Moreover, Lmo4 was specifically expressed in human coronary artery endothelium in an asymmetric pattern (Figure 5.7). These results not only confirm that disturbed flow induced in our mouse carotid model changes protein expression of some of the expected mechanosensitive genes, but also provide further evidence supporting the validity of the newly discovered mechanosensitive genes.


Figure 5.7 Lmo4 is differentially expressed in mouse aortic arch and human coronary artery. (A), En face staining of greater curvature (GC), lesser curvature (LC) of the arch, and the thoracic aorta (TA) was performed with Lmo4 antibody (Red). Blue signal indicates nuclei stained with DAPI; green signal indicates elastic laminae detected by autofluorescence. Shown are representative images of 7 different mice. Paraffin sections of human coronary artery were stained for Lmo4 protein expression (B). Overall staining patterns were shown at low magnification (x5) and zoomed views (20X) of the indicated areas (broken box).

## Discussion

Although the association between localization of atherosclerotic lesions and local hemodynamics has been recognized for over several decades, compelling evidence directly demonstrating the cause-and-effect relationship between disturbed flow and atherosclerosis has been scarce, largely due to a lack of adequate animal models to test the hypothesis directly. We recently have provided evidence directly demonstrating that disturbed flow acutely caused by partial ligation of carotid artery rapidly induces endothelial dysfunction in one week and atherosclerosis in two weeks ${ }^{28}$. We further developed a novel method of endothelial RNA extraction from mouse carotid intima ${ }^{28}$. The availability of sufficient quantity of endothelial RNA from mouse carotid intima enabled us to carry out genome-wide high-throughput screening studies to identify mechanosensitive genes in the mouse model. Using this novel method and mouse model, we identified 62 (27 up and 35 down) genes at 12 hr and 523 (228 up and 295 down) genes at 48 hr after the partial ligation that changed significantly in the flowdisturbed LCA endothelium compared to the contra-lateral RCA (Figure 5.1). The microarray results were further validated for 46 selected genes by qPCR (Figure 5.2). To our great surprise, all 40 up- or down-regulated genes tested were validated by qPCR. Four of those genes (two previously known mechanosensitive genes: BMP4 and Angpt2; two novel mechanosensitive genes: Lmo4 and Jam2) were further validated by immunostaining of mouse carotid artery (Figure 5.6). In particular, expression of Lmo4 was validated by immunostaining of mouse aortic arch and human coronary artery (Figure 5.7). Gene ontology analyses using the mechanosensitive genes suggest that disturbed flow rapidly controls expression of endothelial genes involved in cell morphology and proliferation pathways, followed by additional genes regulating inflammatory and immune responses by 48 hrs post-ligation (Table 5.1). These
secondary responses involving inflammation and immune responses may lead to subsequent endothelial dysfunction by 1 week and atherosclerosis by 2 weeks. This is the first in vivo genome-wide DNA microarray study revealing the gene expression profiles in response to acute exposure to flow-disturbance using mouse carotid endothelium. While confirming some of the previously known mechanosensitive genes, this study reports numerous novel mechanosensitive genes that have never been reported previously to our knowledge.

Our study uncovers one interesting group of mechanosensitive genes as immediate and persistent responders that were up- or down-regulated by disturbed flow in LCA endothelium both at 12 and 48 hr time points (Table 5.4).

Table 5.4. Common mechanosensitive genes between 12 hr and 48 hr
Up-regulated (LCA/RCA) Down-regulated (LCA/RCA)

| Ctgf | 2310046K01Rik |
| :--- | :--- |
| Ctps | BC020535 |
| Fosl2 | Dab2ip |
| Got2 | Dhh |
| Lmo4 | E030024M20Rik |
|  | Eln |
|  | Frrl1 |
|  | Icam2 |
|  | Id1 |
|  | Inmt |
|  | Klf2 |
|  | Klf4 |
|  | Klk10 |
|  | Kras |
|  | Lims2 |
|  | Lsr |
|  | P4ha2 |
|  | Pdlim2 |
|  | Ptprj |
|  | Rab11fip5 |
|  | Rhpn2 |
|  | Slc9a3r2 |
|  | Tek |
|  | Timp3 |

These genes include some of the well-known mechanosensitive genes such as KIf2 and Klf4 ${ }^{11,20,26}$ while the majority of them have never been reported previously as mechanosensitive genes such as transcription regulators Lmo4, Fos/2, and Id1. These early and persistent responders could represent the primary mechanosensitive genes that respond immediately to disturbed flow in endothelium, potentially playing a key role in vascular biology and atherosclerosis.

Lmo4 (LIM-only protein 4) is a potential oncogene and associated with growth, migration and invasion of breast cancer cells ${ }^{32-34}$. In our study, we found that Lmo4 expression is upregulated in disturbed flow regions including mouse LCA endothelium and aortic arch. Interestingly, Lmo4 expression in human coronary artery was found specifically in endothelial cells in an asymmetric manner, consistent with the idea of its flow-dependent expression. Interestingly, oscillatory shear stress stimulates endothelial cell proliferation ${ }^{36-39}$ suggesting a potential role for Lmo4 overexpressed in flow-disturbed regions in the pro-atherogenic response.

Previously, several DNA microarray studies have been reported generating the lists of potential mechanosensitive genes using cultured endothelial cells exposed to various shear stress conditions, laminar, pulsatile laminar, oscillatory shear and turbulent flow. In most studies, gene expression profiles in endothelial cells exposed to laminar shear were compared to that of static culture conditions ${ }^{9-17}$, while a few compared laminar shear to that of oscillatory or turbulent shear ${ }^{14,38,40}$, better simulating pathophysiological conditions. These microarray studies have identified many mechanosensitive genes such as Klf2, Klf4, BMP-4, cathepsins, and Angpt2 and subsequent studies have revealed functional significance of these mechanosensitive genes in regulation of inflammation, thrombosis, vascular remodeling, angiogenesis and arteriogenesis ${ }^{11,19-22}$, ${ }^{26-27}$, demonstrating the critical use of these microarray studies in studying vascular
biology and diseases. Since cultured endothelial cells are prone to phenotypic change during extended culture (no flow condition) and in vitro shear conditions cannot exactly replicate in vivo conditions, we wanted to examine whether the mechanosensitive genes found in our mouse endothelium in vivo were similar or different to those found in vitro. Our initial comparison was carried out between the 42 confirmed mechanosensitive genes in vivo and our HUVEC array result using the same microarray platform. These comparisons showed that $\sim 55 \%$ mechanosensitive genes examined here were conserved while the remaining $\sim 45 \%$ were either dysregulated or lost. Similarly, we found that $\sim 50 \%$ of the in vivo genes were also conserved, while $\sim 50 \%$ were not when our in vivo data were compared to another independent study recently reported by Conway et. al. ${ }^{14}$. These results demonstrate that approximately half of the mechanosensitive genes found in vivo can be confirmed in vitro, while the other half may not be found in vitro due to phenotypic changes in cultured cells. These findings clearly demonstrate the critical need of in vivo models in studying flow-dependent vascular responses and diseases.

Recently, Davies and colleagues have conducted in vivo DNA microarray studies using endothelial RNAs obtained directly from the flow-disturbed inner aortic arch and undisturbed flow region of normal pig aorta ${ }^{35,41-42}$. When we compared our list of 42 confirmed mechanosensitive genes found in vivo to that of pig endothelial array result (Table S7), we found only 2 (KIf4 and eNOS) were found in their list. This discrepancy could be due to following reasons: First, this may represent the difference in the acute mouse model vs. chronic pig aorta model. Since pig aortic arch is exposed to chronic changes including flow-disturbance for many months from birth, the observed gene profile changes may be complex and may not be solely attributed to flow-disturbance. On the other hand, we isolated endothelial RNA samples within 12 to 48 hrs following
partial ligation, enabling us to study direct effect of flow-disturbance on endothelial gene expression in vivo. Second, while the inner curvature of pig aortic arch is a well-known naturally occurring flow-disturbed region, it may be difficult to identify a distinct region exposed to disturbed flow and to obtain RNA samples from the small area only. In contrast, our mouse carotid artery (LCA) is exposed to flow-disturbance occurring nearly homogeneously along the length of the common carotid artery as we recently demonstrated ${ }^{28}$. Third, unlike our mouse array study using the mouse genome-wide probes, the pig array was carried out against human probes due to the lack of porcine specific arrays. This could have resulted in underestimation of mechanosensitive genes in the pig array study. One advantage of our study using the mouse model is that the identified mechanosensitive genes could easily be further examined for their pathophysiological importance in transgenic or knockout mice.

One caveat of in vivo studies such as ours is the potential contamination of RNAs originating from leukocytes accumulated in the carotid intima or medial smooth muscle cells. However, as we have recently demonstrated, our intimal RNA isolation method is free of markers of smooth muscle cells ( $\alpha$-SMA) and leukocytes (CD11b) as determined by $\mathrm{qPCR}{ }^{28}$. In addition, we did not find discernible CD11b positive staining in the intima of LCA and RCA within two days of partial ligation ${ }^{28}$, although we found them in the adventitia ${ }^{28}$. This was the reason that we limited our experimental time points to 12 and 48 hrs to prevent potential contamination of infiltrating cells in the LCA intima. Furthermore, we examined whether additional markers of infiltrating leukocytes in our microarray results. CD3, CD4, CD28, CD11b, CD43, CD16 and CD56 are either not detectable or not significantly different between LCA and RCA, suggesting there is no obvious contamination of T cells, B cells or macrophages in our RNA samples. While we cannot completely rule out the possibility of infiltrating cells affect our gene lists, we
are especially confident for those mechanosensitive genes such as well-known Klf2, Klf4, eNOS and the novel Jam2, Klk10 and Dhh that are highly expressed in the contralateral RCA, but that are decreased in flow-disturbed LCA.

In summary, we have carried out in vivo genome-wide microarray studies using mouse carotid endothelium exposed to disturbed flow. From this study, we identified more than 500 mechanosensitive genes that change in response to disturbed flow within 2 days. Based on our analysis of confirmed 42 mechanosensitive genes identified in mouse carotid endothelium, we estimate $\sim 50 \%$ of the in vivo mechanosensitive genes are novel while the rest confirms the previous results reported in cultured endothelial cells. These findings suggest that while the in vitro flow studies are valid and play important roles in studying detailed mechanistic studies, it highlights the critical and unique need of in vivo models to study vascular biology and diseases since many of the mechanosensitive genes are lost or dysregulated during culture. These novel mechanosensitive genes identified in this study need to be further studied to determine their functional importance in cells and animal models in the future. They may provide novel therapeutic and diagnostic targets of vascular diseases such as atherosclerosis.

## References

1. Ross R. Atherosclerosis--an inflammatory disease. N Engl J Med. 1999;340:115126
2. Libby P. Inflammation in atherosclerosis. Nature. 2002;420:868-874
3. Ku DN, Giddens DP, Zarins CK, Glagov S. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis. 1985;5:293-302
4. VanderLaan PA, Reardon CA, Getz GS. Site specificity of atherosclerosis: Siteselective responses to atherosclerotic modulators. Arterioscler Thromb Vasc Biol. 2004;24:12-22
5. Berk BC. Atheroprotective signaling mechanisms activated by steady laminar flow in endothelial cells. Circulation. 2008;117:1082-1089
6. Davies PF, Mundel T, Barbee KA. A mechanism for heterogeneous endothelial responses to flow in vivo and in vitro. J Biomech. 1995;28:1553-1560
7. Jo H, Song H, Mowbray A. Role of nadph oxidases in disturbed flow- and bmp4induced inflammation and atherosclerosis. Antioxid Redox Signal. 2006;8:16091619
8. Chien S. Effects of disturbed flow on endothelial cells. Ann Biomed Eng. 2008;36:554-562
9. Garcia-Cardena G, Comander JI, Blackman BR, Anderson KR, Gimbrone MA. Mechanosensitive endothelial gene expression profiles: Scripts for the role of hemodynamics in atherogenesis? Ann $N$ Y Acad Sci. 2001;947:1-6
10. Zhao Y, Chen BP, Miao H, Yuan S, Li YS, Hu Y, Rocke DM, Chien S. Improved significance test for DNA microarray data: Temporal effects of shear stress on endothelial genes. Physiol Genomics. 2002;12:1-11
11. Dekker RJ, van Soest S, Fontijn RD, Salamanca S, de Groot PG, VanBavel E, Pannekoek H, Horrevoets AJ. Prolonged fluid shear stress induces a distinct set of endothelial cell genes, most specifically lung kruppel-like factor (klf2). Blood. 2002;100:1689-1698
12. Chen BP, Li YS, Zhao Y, Chen KD, Li S, Lao J, Yuan S, Shyy JY, Chien S. DNA microarray analysis of gene expression in endothelial cells in response to 24-h shear stress. Physiol Genomics. 2001;7:55-63
13. McCormick SM, Eskin SG, McIntire LV, Teng CL, Lu CM, Russell CG, Chittur KK. DNA microarray reveals changes in gene expression of shear stressed human umbilical vein endothelial cells. Proc Natl Acad Sci U S A. 2001;98:8955-8960
14. Conway DE, Williams MR, Eskin SG, McIntire LV. Endothelial cell responses to atheroprone flow are driven by two separate flow components: Low time-average shear stress and fluid flow reversal. American journal of physiology. 2010;298:H367-374
15. Himburg HA, Dowd SE, Friedman MH. Frequency-dependent response of the vascular endothelium to pulsatile shear stress. American journal of physiology. 2007;293:H645-653
16. Chu TJ, Peters DG. Serial analysis of the vascular endothelial transcriptome under static and shear stress conditions. Physiol Genomics. 2008;34:185-192
17. Dai G, Kaazempur-Mofrad MR, Natarajan S, Zhang Y, Vaughn S, Blackman BR, Kamm RD, Garcia-Cardena G, Gimbrone MA, Jr. Distinct endothelial phenotypes evoked by arterial waveforms derived from atherosclerosis-susceptible and resistant regions of human vasculature. Proc Natl Acad Sci U S A. 2004;101:14871-14876
18. Chang K, Weiss D, Suo J, Vega JD, Giddens D, Taylor WR, Jo H. Bone morphogenic protein antagonists are coexpressed with bone morphogenic protein 4 in endothelial cells exposed to unstable flow in vitro in mouse aortas and in human coronary arteries: Role of bone morphogenic protein antagonists in inflammation and atherosclerosis. Circulation. 2007;116:1258-1266
19. Sorescu GP, Sykes M, Weiss D, Platt MO, Saha A, Hwang J, Boyd N, Boo YC, Vega JD, Taylor WR, Jo H. Bone morphogenic protein 4 produced in endothelial cells by oscillatory shear stress stimulates an inflammatory response. J Biol Chem. 2003;278:31128-31135
20. SenBanerjee S, Lin Z, Atkins GB, Greif DM, Rao RM, Kumar A, Feinberg MW, Chen Z, Simon DI, Luscinskas FW, Michel TM, Gimbrone MA, Jr., GarciaCardena G, Jain MK. KIf2 is a novel transcriptional regulator of endothelial proinflammatory activation. J Exp Med. 2004;199:1305-1315
21. Tressel SL, Kim H, Ni CW, Chang K, Velasquez-Castano JC, Taylor WR, Yoon YS, Jo H. Angiopoietin-2 stimulates blood flow recovery after femoral artery occlusion by inducing inflammation and arteriogenesis. Arterioscler Thromb Vasc Biol. 2008;28:1989-1995
22. Tressel SL, Huang RP, Tomsen N, Jo H. Laminar shear inhibits tubule formation and migration of endothelial cells by an angiopoietin-2 dependent mechanism. Arterioscler Thromb Vasc Biol. 2007;27:2150-2156
23. Platt MO, Ankeny RF, Shi GP, Weiss D, Vega JD, Taylor WR, Jo H. Expression of cathepsin $k$ is regulated by shear stress in cultured endothelial cells and is increased in endothelium in human atherosclerosis. American journal of physiology. 2007;292:H1479-1486
24. Platt MO, Ankeny RF, Jo H. Laminar shear stress inhibits cathepsin I activity in endothelial cells. Arterioscler Thromb Vasc Biol. 2006;26:1784-1790
25. Won D, Zhu SN, Chen M, Teichert AM, Fish JE, Matouk CC, Bonert M, Ojha M, Marsden PA, Cybulsky MI. Relative reduction of endothelial nitric-oxide synthase expression and transcription in atherosclerosis-prone regions of the mouse aorta and in an in vitro model of disturbed flow. Am J Pathol. 2007;171:1691-1704
26. Villarreal G, Jr., Zhang Y, Larman HB, Gracia-Sancho J, Koo A, Garcia-Cardena G. Defining the regulation of klf4 expression and its downstream transcriptional targets in vascular endothelial cells. Biochem Biophys Res Commun. 2009
27. Sorescu GP, Song H, Tressel SL, Hwang J, Dikalov S, Smith DA, Boyd NL, Platt MO, Lassegue B, Griendling KK, Jo H. Bone morphogenic protein 4 produced in endothelial cells by oscillatory shear stress induces monocyte adhesion by stimulating reactive oxygen species production from a nox1-based nadph oxidase. Circ Res. 2004;95:773-779
28. Nam D, Ni CW, Rezvan A, Suo J, Budzyn K, Llanos A, Harrison D, Giddens D, Jo H. Partial carotid ligation is a model of acutely induced disturbed flow, leading to rapid endothelial dysfunction and atherosclerosis. Am J Physiol Heart Circ Physiol. 2009;297:H1535-1543
29. Bolstad BM, Irizarry RA, Astrand M, Speed TP. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics. 2003;19:185-193
30. Tusher VG, Tibshirani R, Chu G. Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A. 2001;98:5116-5121
31. Schmittgen TD, Livak KJ. Analyzing real-time pcr data by the comparative $c(t)$ method. Nat Protoc. 2008;3:1101-1108
32. Sum EY, Shackleton M, Hahm K, Thomas RM, O'Reilly LA, Wagner KU, Lindeman GJ, Visvader JE. Loss of the lim domain protein Imo4 in the mammary gland during pregnancy impedes lobuloalveolar development. Oncogene. 2005;24:4820-4828
33. Sum EY, Segara D, Duscio B, Bath ML, Field AS, Sutherland RL, Lindeman GJ, Visvader JE. Overexpression of Imo4 induces mammary hyperplasia, promotes cell invasion, and is a predictor of poor outcome in breast cancer. Proc Natl Acad Sci U S A. 2005;102:7659-7664
34. Visvader JE, Venter D, Hahm K, Santamaria M, Sum EY, O'Reilly L, White D, Williams R, Armes J, Lindeman GJ. The lim domain gene Imo4 inhibits differentiation of mammary epithelial cells in vitro and is overexpressed in breast cancer. Proc Natl Acad Sci U S A. 2001;98:14452-14457
35. Passerini AG, Polacek DC, Shi C, Francesco NM, Manduchi E, Grant GR, Pritchard WF, Powell S, Chang GY, Stoeckert CJ, Jr., Davies PF. Coexisting proinflammatory and antioxidative endothelial transcription profiles in a disturbed flow region of the adult porcine aorta. Proc Natl Acad Sci U S A. 2004;101:24822487
36. Davies PF, Dewey CF, Jr., Bussolari SR, Gordon EJ, Gimbrone MA, Jr. Influence of hemodynamic forces on vascular endothelial function. In vitro studies of shear stress and pinocytosis in bovine aortic cells. J Clin Invest. 1984;73:1121-1129
37. Guo D, Chien S, Shyy JY. Regulation of endothelial cell cycle by laminar versus oscillatory flow: Distinct modes of interactions of amp-activated protein kinase and akt pathways. Circ Res. 2007;100:564-571
38. Garcia-Cardena G, Comander J, Anderson KR, Blackman BR, Gimbrone MA, Jr. Biomechanical activation of vascular endothelium as a determinant of its functional phenotype. Proc Natl Acad Sci U S A. 2001;98:4478-4485
39. Lin K, Hsu PP, Chen BP, Yuan S, Usami S, Shyy JY, Li YS, Chien S. Molecular mechanism of endothelial growth arrest by laminar shear stress. Proc Natl Acad Sci U S A. 2000;97:9385-9389
40. Brooks AR, Lelkes PI, Rubanyi GM. Gene expression profiling of human aortic endothelial cells exposed to disturbed flow and steady laminar flow. Physiol Genomics. 2002;9:27-41
41. Civelek M, Manduchi E, Riley RJ, Stoeckert CJ, Jr., Davies PF. Chronic endoplasmic reticulum stress activates unfolded protein response in arterial endothelium in regions of susceptibility to atherosclerosis. Circ Res. 2009;105:453-461
42. Passerini AG, Shi C, Francesco NM, Chuan P, Manduchi E, Grant GR, Stoeckert CJ, Jr., Karanian JW, Wray-Cahen D, Pritchard WF, Davies PF. Regional determinants of arterial endothelial phenotype dominate the impact of gender or short-term exposure to a high-fat diet. Biochem Biophys Res Commun. 2005;332:142-148

## CHAPTER 6

# DISCOVERY OF MECHANOSENSITIVE MICRORNAS USING IN VIVO MODEL OF MOSUE CAROTID ARTERY ENDOTHELIUM EPXOSED TO DISTURBED FLOW 


#### Abstract

Summary As we have shown in Chapter 5, using the partial carotid mouse model, we identified numerous mechanosensitive genes helping us to understand the mechanism by which disturbed flow induces atherosclerosis. However, this type of systematic regulation of gene expression requires different levels of control at the transcriptional, posttranscriptional, and translational levels. MicroRNAs (miRNAs) are a newly discovered group of endogenous small RNAs that regulate gene expression at the posttranscriptional level. They have been shown to regulate cell proliferation, differentiation, apoptosis ${ }^{1-3}$, and also play diverse roles in fundamental biological processes in endothelial cells. In this study, we carried out a miRNA microarray analysis to explore the expression profiles of miRNAs in partially ligated mouse carotid endothelium. The microarray results were validated by qPCR and further bioinformatics analyses were performed to discover the correlation between the potential target genes regulated by flow-sensitive miRNAs and those shear-sensitive mRNAs identified in Chapter 5.


## Introduction

MicroRNAs (miRNAs) are small non-coding RNAs (~22 nucleotides), which regulate gene expression at the post-transcriptional level ${ }^{4-5}$. They interact with the 3 ' untranslated region ( $3^{\prime}$ UTR) of specific target mRNAs in a sequence-specific manner ${ }^{6}$. Each miRNA is thought to target multiple mRNAs, resulting in mRNA degradation or translational inhibition ${ }^{4}$. The expression of miRNAs is tightly controlled and highly tissue, developmental stage, and disease specific. In endothelial cells (EC), it has become clear that miRNAs play diverse roles in fundamental biological processes, such as cell migration $^{7}$, angiogenesis ${ }^{8-9}$, and inflammation ${ }^{10}$. In addition, miR-19a and mir-23b have been shown to play a role in EC proliferation modulated by laminar shear stress in cultured HUVEC ${ }^{11-12}$. However, the role of miRNAs in disturbed flow induced inflammation and atherosclerosis still need to be determined.

Atherosclerosis is an inflammatory disease ${ }^{13-14}$ preferentially occurring in arterial regions exposed to disturbed flow, which is characterized by low and oscillatory shear stress, while straight arterial regions exposed to stable flow are protected from atherosclerosis ${ }^{15-}$ ${ }^{16}$. Despite the association between the two, in vivo evidence directly linking disturbed flow conditions to atherosclerosis has been scarce. In Chapter 4, we have shown that disturbed flow caused by partial ligation of mouse carotid artery rapidly induces endothelial dysfunction by 1 week, and robust plaques formation by two weeks in hyperlipidemic mice, directly demonstrating the causal relationship between disturbed flow and atherosclerosis ${ }^{17}$. In addition, using carotid arteries from the same mouse model, we have developed a novel method of obtaining endothelial RNA samples that are nearly free of contamination from smooth muscle cells and leukocytes RNAs ${ }^{17}$.

In this study, we carried out miRNA microarray analysis on endothelial RNAs obtained from the flow-disturbed left common carotid arterial (LCA) and contralateral right carotid arterial (RCA) after 12 or 48 hours of partial ligation in mouse. The results were validated by qPCR in which 7 of 14 selected miRNAs were confirmed including miR-712, miR-223, miR-195, and miR-30c. We also analyzed the potential target genes of these shearsensitive miRNAs and made correlations with mechanosensitive mRNAs we described in Chapter 5.

## Methods

Partial carotid ligation and flow pattern validation by high resolution ultrasound All animal studies were performed with male C57BI/6 mice according to the approved IACUC protocol by Emory University. Mice (Jackson Laboratories) were partially ligated between 6 to 8 weeks of age as recently described ${ }^{17}$. Briefly, three of four caudal branches of left common carotid artery (LCA) - left external carotid, internal carotid, and occipital artery - were ligated with 6-0 silk suture while the superior thyroid artery was left intact in anesthetized mice. Six hours post-surgery, each animal was examined by VEVO 770 High-resolution in vivo micro-imaging ultrasound system to determine whether ligation induced low and oscillatory shear stress in the LCA ${ }^{17}$.

## Intimal RNA isolation from carotid arteries

Total RNA from intima were separately obtained from LCA and RCA at 12, and 48 hr post-ligation as described previously ${ }^{17}$. Briefly, LCA and RCA were quickly flushed with $150 \mu \mathrm{l}$ of QIAzol lysis reagent (QIAGEN) using 29G insulin syringe into a microfuge tube. The eluate was then used for total intimal RNA isolation using miRNeasy mini kit (QIAGEN).

## Microarray Procedures

Total intimal RNAs were obtained from LCA and RCA at 12hr and 48hr post-ligation. Intimal RNAs from three LCAs or RCAs were pooled to obtain $\sim 30 \mathrm{ng}$ total RNA. All RNA samples used for the microarray study passed a quality control test using Agilent BioAnalyze NanoChip. Each sample was linearly amplified by WT-Ovation RNA amplification system (NuGEN) and used for the microarray study using Illumina Mouse v2 MicroRNA expression beadchip array with 656 mouse miRNAs (Illumina) at the Emory Biomarker Service Center. After hybridization, BeadChips are scanned on the Illumina BeadArray Reader.

## Microarray Data Analysis and Bioinformatics

The microarray data was statistically analyzed by Significance Analysis of Microarrays software (SAM) ${ }^{18}$. The differentially expressed genes between LCA and RCA were identified for those which showed more than 1.5 fold-changes at $<10 \%$ false discovery rate. The potential target genes of miRNAs were analyzed by TargetScan.

## Quantitative real time $P C R(q P C R)$ validation

Total RNA was polyadenylated and reverse transcribed for use in a two-step qRT-PCR using the NCode miRNA First-Strand cDNA Synthesis and qRT-PCR kits (Invitrogen). The resulting cDNA was subjected to qRT-PCR using the NCode universal reverse primer in conjunction with a sequence-specific forward primer for selected miRNAs. A master mix was prepared for each PCR, which included SYBR GreenER ${ }^{\text {TM }}$ qRT-PCR SuperMix, forward primer, Universal qRT-PCR Primer, ROX reference dye and template cDNA. Snorna202 was used as the internal control. The reactions were monitored using a preheated real-time instrument (ABI StepOne Plus). The PCR conditions were

2 min at $50^{\circ} \mathrm{C}$ and 10 min at $95^{\circ} \mathrm{C}$, followed by 40 cycles of $95^{\circ} \mathrm{C}$ for 4 s and $57^{\circ} \mathrm{C}$ for 30 s . Fold changes between LCA and RCA were determined using the $\Delta \Delta \mathrm{Ct}$ method ${ }^{19}$.

## Results

Discovery of mechanosensitive miRNAs regulated by disturbed flow in mouse carotid endothelium in vivo.

Table 6.1. miRNAs expression in mouse carotids differentially regulated by ligation.

| Gene ID | Gene Name | Fold Change | q-value(\%) | Gene ID | Gene Name | Fold Change | q-value(\%) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Upregulated by LCA 12 hr post lidation |  |  |  | Downgulated by LCA 12 hr post lidation |  | 0.17 | 0.00 |
| ILMN_3167162 | mmu-miR-291b-5p | 17.26 | 0.00 | ILMN_3169121 | mmu-miR-742* |  |  |
| ILMN_3169017 | mmu-miR-511 | 2.29 | 0.00 |  |  |  |  |
| ILMN_3169029 | mmu-miR-1186 | 1.52 | 0.00 |  |  |  |  |
| Upregulated by LCA 48hr post lidation |  | 71.52 | 0.00 | Downgulated by LCA 12 hr post lidation |  |  |  |
| ILMN_3167999 | mmu-miR-712 |  |  | ILMN_3168388 | mmu-miR-7a | 0.33 | 0.00 |
| ILMN_3167081 | mmu-miR-330* | 33.71 | 0.00 | ILMN_3168172 | mmu-miR-29b | 0.42 | 0.00 |
| ILMN_3167002 | mmu-miR-200c | 27.26 | 0.00 | ILMN_3169003 | mmu-miR-574-5p | 0.61 | 0.00 |
| ILMN_3169007 | mmu-miR-92b | 10.29 | 0.00 | ILMN_3168985 | mmu-miR-327 | 0.37 | 5.03 |
| ILMN_3166979 | mmu-miR-223 | 7.47 | 0.00 | ILMN_3167551 | mmu-let-7d | 0.54 | 5.03 |
| ILMN_3169129 | solexa-1127-427 | 5.26 | 0.00 | ILMN_3167191 | mmu-miR-195 | 0.32 | 7.37 |
| ILMN_3168964 | mmu-miR-615-5p | 2.64 | 0.00 | ILMN_3167374 | mmu-miR-26b | 0.50 | 7.37 |
| ILMN_3167491 | mmu-miR-128a:9.1 | 2.16 | 0.00 | ILMN_3167729 | mmu-miR-30c | 0.57 | 7.37 |
| ILMN_3168517 | mmu-miR-93 | 2.12 | 0.00 | ILMN_3168503 | mmu-miR-692 | 0.61 | 7.37 |
| ILMN_3169147 | solexa-284-1594 | 1.91 | 0.00 | ILMN_3169001 | mmu-miR-509-5p | 0.62 | 7.37 |
| ILMN_3167373 | mmu-miR-423-3p | 1.90 | 0.00 | ILMN_3167681 | mmu-miR-221 | 0.46 | 8.43 |
| ILMN_3168413 | mmu-miR-324-3p | 1.78 | 0.00 | ILMN_3168494 | mmu-miR-181d | 0.61 | 8.43 |
| ILMN_3167894 | mmu-miR-146b | 23.34 | 3.69 | ILMN_3166942 | mmu-miR-691 | 0.64 | 8.43 |
| ILMN_3167032 | mmu-miR-699 | 20.43 | 3.69 | ILMN_3169125 | mmu-miR-877* | 0.29 | 10.29 |
| ILMN_3169151 | solexa-308-1456 | 2.16 | 3.69 | ILMN_3168346 | mmu-miR-152 | 0.53 | 10.29 |
| ILMN_3169111 | mmu-miR-138* | 1.91 | 3.69 | ILMN_3167224 | mmu-miR-30d | 0.58 | 10.29 |
| ILMN_3167774 | mmu-miR-210 | 1.66 | 3.69 | ILMN_3169002 | mmu-miR-509-3p | 0.60 | 10.29 |
| ILMN_3169046 | mmu-miR-669e | 64.09 | 6.70 | ILMN_3169095 | mmu-miR-20a* | 0.67 | 10.29 |
| ILMN_3168958 | mmu-miR-770-5p | 18.56 | 6.70 |  |  |  |  |
| ILMN_3169138 | solexa-200-2167 | 14.35 | 6.70 |  |  |  |  |
| ILMN_3168922 | mmu-miR-128 | 10.88 | 6.70 |  |  |  |  |
| ILMN_3168301 | mmu-miR-339-5p | 3.20 | 6.70 |  |  |  |  |
| ILMN_3167248 | mmu-miR-703 | 1.59 | 6.70 |  |  |  |  |
| ILMN_3168165 | mmu-miR-342-3p | 2.67 | 7.97 |  |  |  |  |
| ILMN_3168045 | mmu-miR-17* | 61.94 | 9.83 |  |  |  |  |
| ILMN_3167226 | mmu-miR-296-5p | 43.12 | 9.83 |  |  |  |  |
| ILMN_3169104 | mmu-miR-93* | 2.33 | 9.83 |  |  |  |  |

We carried out a miRNA microarray study using Illumina BeadChip array containing 656 mouse miRNAs and endothelial RNAs obtained from the flow-disturbed LCA and contralateral RCA at 12 and 48 hours following the partial ligation of LCA of C57BL/6 mice. We found, using a false discovery rate (FDR) of 10\%, 45 (27 up- and 18 downregulated) out of 656 miRNAs were significantly altered by more than $50 \%$ in the flowdisturbed LCA endothelium compared to the RCA 48 hours after ligation (Table 6.1). At

12 hours, only 4 miRNAs ( 3 up- and 1 down-) were differentially regulated in LCA endothelium compared to the RCA (Table 6.1). The significantly altered miRNAs in individual samples were analyzed by hierarchical clustering to examine the intra- and inter-group variations. As shown in the heat maps (Figure 6.1), the samples had slight variations within each group.


Figure 6.1 The expression of miRNAs in response to disturbed flow in mouse carotid artery endothelium in vivo. Total RNAs were obtained from intima of mouse left carotid (flow-disturbed LCA) and right carotid (contralateral control, RCA) 12 and 48 hrs post-ligation. Hierarchical clustering analyses of mechanosensitive miRNAs found in LCA endothelium compared to that of RCA are shown as heat maps. Each column represents a single sample pooled from 3 different LCAs or RCAs, and each row represents a single miRNA probe.

We selected 14 miRNAs (7 up-, 7 down-regulated genes) plus 9 additional miRNAs of interests that were not significantly changed 48 hours post-ligation and tested by qPCR assay. These RNAs used for qPCR validation were independent from those used in the microarray study. Our qPCR results validated the microarray results for the 48 hr time point for the 3 up- and 3-down regulated genes (Figure 6.2A and B). We also selected 9 additional miRNAs of interests which did not change significantly according to the microarray result, but 5 of 9 miRNAs showed significantly difference between LCA and RCA by qPCR (Figure 6.2C). These results suggest that our microarray result using 10\% FDR underestimated the number of mechanosensitive miRNAs that changed significantly.


Figure 6.2 Validation of mechanosensitive miRNAs by qPCR. Total RNAs from intima of LCA or RCA at 48 hours after ligation were collected. Differentially expressed miRNAs were selected for qPCR analyses Each RNA sample was pooled from 3 different mouse carotid, representing total of $9(n=3)$ mice. Microarray results and qPCR validation results for 48 hours time points are shown as fold-increase (A) or fold-decrease (B) of miRNAs expressed in LCA over RCA in log2 scale are shown as mean $\pm$ SEM ( $n=5 \sim 7$ ), *< 0.05 (LCA vs.RCA). In (C), 9 miRNAs of interests that did not reach statistical significance (>10\% FDR) were examined by $q P C R$. Shown are mean $\pm$ SEM ( $n=5 \sim 7$ ), *< 0.05 (LCA vs. RCA).

For the 12 hour time point, none of the 3 significantly upregulated miRNAs (miR-511, miR-1186, and miR-291-5p) were confirmed by qPCR analysis (Figure 6.3). Overall, we were able to validate $50 \%$ of miRNAs at 48 hours while none of the three miRNAs were validated at 12 hours. These results demonstrate the high variability of 12 hour microarray; however, the 48 hour time point microarray results provided a reliable list of mechanosensitive miRNA.


Figure 6.3 Validation of mechanosensitive miRNAs by qPCR. Total RNAs from intima of LCA or RCA at 12 hour after ligation were collected. Differentially expressed miRNAs were selected for qPCR analyses. Each RNA sample was pooled from 3 different mouse carotid, representing total of $9(n=3)$ mice. Microarray results and qPCR validation results for 12 hour time points are shown as fold-difference of miRNAs expressed in LCA over $R C A$ in $\log 2$ scale as mean $\pm$ SEM $(n=3)$

Validation of mechanosensitive miRNAs in iMAEC-WT
To further confirm the expression of miRNAs in response to different flow patterns, we used iMAEC-WT cell line, described in Chapter 3, to validate the mechanosensitive miRNAs. iMAEC-WT were exposed to LS or OS for 1 day and the expression level of miRNAs was determined by qPCR. Nineteen miRNAs were selected for qPCR analysis based on the microarray results and highly expressed miRNAs in ECs that have been
reported in literature. In iMAEC-WT exposed to LS or OS, seven of the nineteen selected miRNAs showed significant shear dependence (Figure 6.4). Of those, the response of miR-712, miR-29b, miR-7a, and miR-320 to OS was consistent with the mouse carotid endothelium exposed to acute disturbed flow. In contrast, miR-423-3p showed the opposite response to OS and the remaining 12 miRNAs were not affected by shear stress. These results suggest several mechanosensitive miRNAs exhibit similar responses in iMAEC to OS. The results from iMAEC culture provide a convincing evidence to support our in vivo findings using the partial carotid ligation model. These results also suggest the need of an in vivo model for studying endothelial biology due to phenotypic drift of cultured endothelial cells.


Figure 6.4 Validation of mechanosensitive miRNAs in iMAEC-WT. Total RNAs from iMAEC-WT exposed to LS or OS for 1 day were collected. Differentially expressed miRNAs were selected for $q P C R$ analyses. $q P C R$ validation results in iMAEC are normalized with snoRNA202 and shown as fold-difference of miRNAs in OS over LS as mean $\pm$ SEM $(n=3)$

The correlation between mechanosensitive miRNAs and mRNAs
To determine the function of mechanosensitive miRNAs identified in vivo, and provide the potential regulation network of miRNAs, we utilized bioinformatics approaches to find a correlations between the miRNAs targets and shear-sensitive mRNAs. A extensive in silico analysis using TargetScan ${ }^{20}$, a program to search for potential targets of mechanosensitive miRNAs, generated thousands of candidates. We compared the resultant list with our mRNA expression profiles from Chapter 5 to provide potential links between mechanosensitive miRNAs to their corresponding mRNAs. The Venn diagrams (Figure 6.5) showed two categories of regulatory correlation. Group A: the predicted targets of upregulated miRNAs and doweregulated mRNAs in LCA (Figure 6.5A), and the group B: the the predicted targets of downregulated miRNAs and upregulated mRNA (Figure 6.5B).

A
$\bigcirc$ Potential Targets of up-regulated miRNAs in disturbed LCA

down-regulated mRNAs in disturbed LCA

B
Potential Targets of down-regulated miRNAs in disturbed LCA


O up-regulated mRNAs in disturbed LCA

Figure 6.5 Venn diagrams show the correlations between potential targets of mechanosensitive miRNAS and mechanosensitive genes.

There are 25 and 31 genes falling in group $A$ and $B$, respectively, and the detailed list is shown in Table 6.2. These two groups of genes showed a reverse direction of regulation between miRNAs and mRNAs by disturbed flow. This is consistent with the finding of the inhibitory effect of miRNAs on gene expression. Furthermore, approximately 10 to $15 \%(25 / 295$, and $31 / 228$ ) of mechanosensitive mRNAs were found to be potential targets of shear-sensitive miRNAs, suggesting the importance of the mechanosensitive miRNAs and mRNAs identified in this dissertation. In addition, it is believed that miRNA regulates gene expression in a post-transcriptional manner ${ }^{4-5}$ which hampers the discovery of its target genes by using the results from mRNA microarray. This suggests our analysis underestimates the number of genes involved in the regulatory network of mechanosensitive miRNAs.

Table 6.2 Predicted mechanosensitive targets and miRNAs

| Up-regulated in LCA | Dwon-regulated in LCA | Down-regulated in LCA | Up-regulated in LCA |
| :---: | :---: | :---: | :---: |
| Targets | miRNAs | Targets | miRNAs |
| GAS7 | miR-29b, miR-let-7d, miR-30c, miR-691, miR-181, miR-30d | PRDM16 | $\begin{aligned} & \operatorname{miR}-712, \text { miR-200c, miR-92b, } \\ & \text { miR-128 } \end{aligned}$ |
| THBS1 | miR-let-7d, miR-327, miR-691 | HS3ST1 | miR-712, miR-200c |
| TNFRSF1B | miR-let-7d, miR-152 | RHPN2 | miR-324-3p, miR-92b |
| SEMA6B | miR-30c, miR-30d | FBLN2 | miR-128 |
| PDGFB | miR-29b, miR-let-7d | TBC1D9B | miR-128 |
| PRKCD | miR-26b, miR-181d | ADCY6 | miR-128 |
| FRZB | miR-30c, miR-30d | AGRN | miR-128 |
| GOT2 | miR-30c, miR-30d | NUMB | miR-146b |
| GADD45A | miR-152 | SORT1 | miR-146b |
| SAMHD1 | miR-181d | KCTD10 | miR-200c |
| TXNDC5 | miR-181d | SEMA3F | miR-200c |
| EVI2A | miR-181d | ARL6IP2 | miR-223 |
| CXCL12 | miR-221 | KCTD12 | miR-324-3p |
| BLOC1S2 | miR-26b | IGF2 | miR-324-3p |
| ER01LB | miR-26b | PDLIM2 | miR-339-5p |
| HOMER1 | miR-26b | RRAS | miR-699 |
| PDE4B | miR-26b | PKP4 | miR-699 |
| CTGF | miR-26b | PCOLCE2 | miR-92b |
| TMEM132A | miR-29b | WWP2 | miR-92b |
| IFI30 | miR-29b | NKX2-3 | miR-92b |
| PTPRC | miR-327 | KLF2 | miR-92b |
| PREP | miR-327 | NAGK | miR-93 |
| RASSF4 | miR-692 | DUSP8 | miR-93 |
| TGFBI | miR-692 | MTERFD2 | miR-93 |
| GPATCH3 | miR-let-7d | RAB11FIP5 | miR-93 |
| GOLT1B | miR-let-7d |  |  |
| MYO1F | miR-let-7d |  |  |
| SMAP2 | miR-let-7d |  |  |
| TTLL4 | miR-let-7d |  |  |
| BZW2 | miR-let-7d |  |  |
| EDN1 | miR-let-7d |  |  |

## Discussion

Evidence is now emerging showing the importance of miRNAs in cardiovascular disease. However, the particular miRNAs involved in atherosclerosis have not been identified. Here, we provide a list of miRNAs, which expression was altered in response to an acute stimulation of disturbed flow, a key pathophysiological factor in atherosclerosis. These miRNAs may be the regulators of inflammation in the early stages of atherosclerosis. The bioinformatics approaches used in this study, to predict the target genes of mechanosensitive miRNAs, identified two groups of targets which correlate with the profiles of shear-sensitive mRNAs. Because most miRNAs regulate gene expression post-transcriptionally ${ }^{4-5}$, the gene number inside the miRNAs regulatory network is underestimated. However, the genes (miRNAs and mRNAs) provided here may play critical roles in cellular inflammation and atherosclerosis.

In this study, we performed miRNA microarray analysis using endothelial RNA collected from the mouse carotid artery exposed to disturbed flow. Our result showed higher variability between samples and groups which resulted in a low validation rate (50\%). This may be due to the variability between mice or a limitation in the experimental design. Given the small size of a mouse carotid, we could not obtain a sufficient quantity of total endothelium RNA to carry out our study. The RNA samples, therefore, were amplified before the direct hybridization on microarray chip. On average, the expression levels of miRNAs are lower than that of mRNAs ${ }^{21-22}$, which increases the difficulty in detection minimally expressed miRNAs. These limitations may contribute to the increased variability in our study and reduced the reliability of our microarray results.

Identification of miRNA regulated genes is a major obstacle in the bioinformatics field. Current prediction methods of miRNAs targets are based on the seeding region of
miRNAs that bind to the target site(s) on a given mRNA by sequence complementarities. These methods also consider additional pairing by other nucleotides, which has been hypothesized to be important in miRNA binding ${ }^{23}$. The tolerance for extensive mismatches outside the seed region is intended to increase the number of potential targets under miRNA control. However, this also generates a large number of the falsepositive targets. In addition, one miRNA can target hundreds of genes and a single gene can be regulated by multiple miRNAs. This makes it difficult to clarify the regulatory network among miRNAs and mRNAs through systematic experiments. In this study, we have narrowed down the number of shear sensitive miRNAs and mRNAs and also provide two lists of genes which show a promising correlation between miRNA and mRNAs. These new targets warrant future investigation to determine their functional importance in atherosclerosis.

## Reference

1. Chen CZ, Li L, Lodish HF, Bartel DP. Micrornas modulate hematopoietic lineage differentiation. Science. 2004;303:83-86
2. Xu P, Guo M, Hay BA. Micrornas and the regulation of cell death. Trends Genet. 2004;20:617-624
3. Mendell JT. Miriad roles for the mir-17-92 cluster in development and disease. Cell. 2008;133:217-222
4. van Rooij E, Olson EN. Micrornas: Powerful new regulators of heart disease and provocative therapeutic targets. J Clin Invest. 2007;117:2369-2376
5. Small EM, Frost RJ, Olson EN. Micrornas add a new dimension to cardiovascular disease. Circulation. 2010;121:1022-1032
6. Zhao Y, Srivastava D. A developmental view of microrna function. Trends Biochem Sci. 2007;32:189-197
7. Poliseno L, Tuccoli A, Mariani L, Evangelista M, Citti L, Woods K, Mercatanti A, Hammond S, Rainaldi G. Micrornas modulate the angiogenic properties of huvecs. Blood. 2006;108:3068-3071
8. Suarez Y, Fernandez-Hernando C, Pober JS, Sessa WC. Dicer dependent micrornas regulate gene expression and functions in human endothelial cells. Circ Res. 2007;100:1164-1173
9. Kuehbacher A, Urbich C, Zeiher AM, Dimmeler S. Role of dicer and drosha for endothelial microrna expression and angiogenesis. Circ Res. 2007;101:59-68
10. Harris TA, Yamakuchi M, Ferlito M, Mendell JT, Lowenstein CJ. Microrna-126 regulates endothelial expression of vascular cell adhesion molecule 1. Proc Nat/ Acad Sci U S A. 2008;105:1516-1521
11. Wang KC, Garmire LX, Young A, Nguyen P, Trinh A, Subramaniam S, Wang N, Shyy JY, Li YS, Chien S. Role of microrna-23b in flow-regulation of rb phosphorylation and endothelial cell growth. Proc Natl Acad Sci U S A. 2010;107:3234-3239
12. Qin X, Wang X, Wang Y, Tang Z, Cui Q, Xi J, Li YS, Chien S, Wang N. Microrna19a mediates the suppressive effect of laminar flow on cyclin d1 expression in human umbilical vein endothelial cells. Proc Natl Acad Sci U S A. 2010;107:3240-3244
13. Ross R. Atherosclerosis--an inflammatory disease. N Engl J Med. 1999;340:115126
14. Libby P. Inflammation in atherosclerosis. Nature. 2002;420:868-874
15. Ku DN, Giddens DP, Zarins CK, Glagov S. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis. 1985;5:293-302
16. VanderLaan PA, Reardon CA, Getz GS. Site specificity of atherosclerosis: Siteselective responses to atherosclerotic modulators. Arterioscler Thromb Vasc Biol. 2004;24:12-22
17. Nam D, Ni CW, Rezvan A, Suo J, Budzyn K, Llanos A, Harrison D, Giddens D, Jo H. Partial carotid ligation is a model of acutely induced disturbed flow, leading to rapid endothelial dysfunction and atherosclerosis. American journal of physiology. 2009;297:H1535-1543
18. Tusher VG, Tibshirani R, Chu G. Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A. 2001;98:5116-5121
19. Schmittgen TD, Livak KJ. Analyzing real-time pcr data by the comparative $\mathrm{c}(\mathrm{t})$ method. Nat Protoc. 2008;3:1101-1108
20. Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB. Prediction of mammalian microrna targets. Cell. 2003;115:787-798
21. Yu Z, Jian Z, Shen SH, Purisima E, Wang E. Global analysis of microrna target gene expression reveals that mirna targets are lower expressed in mature mouse and drosophila tissues than in the embryos. Nucleic Acids Res. 2007;35:152-164
22. Zhang BH, Pan XP, Cox SB, Cobb GP, Anderson TA. Evidence that mirnas are different from other rnas. Cell Mol Life Sci. 2006;63:246-254
23. Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP. Microrna targeting specificity in mammals: Determinants beyond seed pairing. Mol Cell. 2007;27:91-105

## CHAPTER 7

# MICRORNA-663 UPREGULATED BY OSCILLATORY SHEAR STRESS PLAYS A KEY ROLE IN INFLAMMATORY RESPONSE IN HUMAN UMBILICAL VEIN ENDOTHELIAL CELLS 

## Summary

The mechanisms by which oscillatory shear (OS) induces, while high laminar shear stress (LS) prevents atherosclerosis are still unclear. Here, we examined the hypothesis that OS induces inflammatory response, a critical atherogenic event, in endothelial cells by a miRNA-dependent mechanism. By miRNA microarray analysis using total RNA from human umbilical vein endothelial cells (HUVECs) that were exposed to OS or LS for 24 hr , we identified 21 miRNAs that were differentially expressed. Of the 21 miRNAs, 13 were further examined by qPCR, which validated the result for 10 miRNAs (77\%). Of those, the most OS-sensitive miRNA, miR-663 (increased by 3-fold) were studied further for its functional significance. Treatment of HUVECs with the miR-663 antagonist (miR-663-LNA) significantly blocked OS-induced monocyte adhesion, but not OS-induced apoptosis, compared to a scrambled LNA control (control-LNA). DNA microarray study performed under the same conditions revealed 32 up-regulated and 3 down-regulated genes, 6 of which are known to be involved in inflammatory response. We identified 10 OS-sensitive miRNAs including miR-663, which plays a key role in OS-induced inflammatory responses by mediating the expression of inflammatory gene network in HUVECs. These OS-sensitive miRNAs may mediate atherosclerosis induced by disturbed flow.

## Introduction

Atherosclerosis is an inflammatory disease that occurs preferentially at particular areas of disturbed flow characterized by low and oscillatory wall shear stress (OS) in branched or curved arteries ${ }^{1-2}$. In contrast, straight arterial regions are exposed to high and stable shear stress (LS) and are well protected from atherosclerosis ${ }^{2}$. In Chapter 4, I have shown that disturbed flow caused by partial ligation of mouse carotid artery induce robust atherosclerosis rapidly within two weeks upon high-fat diet ${ }^{3}$, directly demonstrating the causal relationship between disturbed flow and atherosclerosis ${ }^{3}$. However, the underlying mechanisms by which disturbed flow induces atherosclerosis still remain unclear.

Gene expression profiles are dramatically altered when endothelial cells (ECs) are exposed to LS or OS. For instance, LS is known to increase expression of atheroprotective genes including kruppel-like factor 2 (KLF2), kruppel-like factor 4 (KLF4), and endothelial nitric oxide synthase (eNOS), while OS stimulates inflammation by overexpression of bone morphogenic protein-4 (BMP4) and adhesion molecules, such as vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), and $E-$ selectin ${ }^{4-8}$. Numerous studies have shown differences between LS- and OS-dependent gene and protein regulation; however, the detailed mechanisms underlying shear dependent gene expression has not been fully elucidated.

MicroRNAs (miRNAs) are a large class of conserved, noncoding, small RNAs that are typically 18 to 22 nucleotides in length. They repress gene expression posttranscriptionally by interacting with the $3^{\prime}$ untranslated region (3' UTR) of specific target mRNAs in a sequence-specific manner ${ }^{9}$. Nearly 800 miRNAs are encoded in the human genome, and each is thought to target multiple mRNAs, resulting in mRNA degradation
or translational inhibition ${ }^{10}$. Studies have demonstrated that miRNAs control cell proliferation, differentiation, and apoptosis ${ }^{11-13}$. In ECs, it has become clear that miRNAs play diverse roles in fundamental biological processes, such as cell migration, angiogenesis, and inflammation. In human ECs, knockdown of Dicer or Drosha, two key enzymes for miRNA biogenesis, in vitro causes a decrease in angiogenesis ${ }^{14-15}$. More specifically, let-7f and miR-27b have been shown to exert pro-angiogenic effects ${ }^{15}$, while overexpression of miR-221/222 in HUVEC inhibits tube formation, migration, and wound healing in response to stem cell factor, suggesting it has an anti-angiogenic effect ${ }^{16}$. The role of miRNAs in vascular inflammation, in particular in leukocyte activation and infiltration into the vascular wall, has recently been reported. Harris et al. identified miR126 as an inhibitor of VCAM-1 expression, a mediator of leukocyte adherence to endothelial cells ${ }^{17}$. Finally, Ji et al. found that downregulation of miR-21 decreased neointima formation in the rat carotid artery after angioplasty which indicates that miR-21 is a mediator of neointima lesion formation ${ }^{18}$.

Though several insights have been made regarding miRNAs governing cellular responses in ECs, the effect of shear stress on miRNAs expression remains unclear. Recently, Chien S. and colleagues showed that miR-19a and mir-23b were upregulated by laminar shear compared to static control demonstrating that miRNAs play roles in EC proliferation modulated by shear stress ${ }^{19-20}$. Given the differential gene regulation between LS and OS, we hypothesized that shear-sensitive miRNAs play critical roles in regulating gene expression and subsequently mediate OS-induced inflammation. To test the hypothesis, we screened the miRNA expression profiles of human umbilical vein endothelial cells (HUVEC) exposed to LS or OS. Through validation studies, we identified 10 OS-sensitive miRNAs. Next, we determined the functional importance of the most OS-induced miRNA, miR-663, and found its specific role in endothelial
inflammatory response, but not in apoptosis, through the alteration of ICAM-1 but not VCAM-1 expression. We then carried out an additional genome-wide array study to discover the potential target genes of miR-663. This DNA microarray study identified 35 potential miR-663 targets, which include a network of inflammatory genes and transcription factors such as KLF4. Collectively, these results suggest that OS induces inflammatory responses in ECs by altering miRNA expression such as upregulation of miR-663, which in turn mediate expression of network of genes.

## Methods

Cell Culture and Shear Studies

HUVEC were purchased from BD biosciences, cultured in M199 media (Cellgro) with 20\% fetal bovine serum (FBS, Hyclone), and used between passage 5 and 6. Confluent cells were exposed to unidirectional LS $\left(15 \mathrm{dyn} / \mathrm{cm}^{2}\right)$ or $\mathrm{OS}\left( \pm 5 \mathrm{dyn} / \mathrm{cm}^{2}\right.$ at 1 Hz frequency) for 24 hr using a cone-and-plate shear device as described by us previously ${ }^{8,}$ 21

## Microarray Analysis of miRNA Expression and qPCR validation

Total RNA was isolated with the miRNeasy Mini Kit (QIAGEN) using HUVEC exposed to LS or OS for 1 day. Microarray assay was performed using a service provider (LC Sciences) as described previously ${ }^{22}$. Briefly, total RNA samples were size fractionated and small RNAs (< 300 nt ) were 3'-extended with a poly(A) tail. An oligonucleotide tag was then ligated to the poly $(\mathrm{A})$ tail for fluorescent dye staining; two different tags (for Cy 3 and Cy5 dyes) were used in dual-sample experiments. Hybridization was performed overnight on a $\mu$ Paraflo microfluidic chip (Chip ID miRHuman 12.0 version, LC

Sciences). After the fluorescence images were collected, the ratio (Cy3/Cy5, log2 transformed, balanced) and $p$-values were calculated using Student t-test. Significant signals were those with less than $0.05 p$-values. We then validated the array data by qPCR. Briefly, the isolated total RNA was polyadenylated and reverse transcribed for use in a two-step qPCR using the NCode miRNA First-Strand cDNA Synthesis and qRTPCR kits (Invitrogen). The resulting cDNA was subjected to qPCR using the NCode universal reverse primer in conjunction with a sequence-specific forward primer for selected miRNAs. A master mix was prepared for each PCR, which included SYBR GreenER ${ }^{\text {TM }}$ qPCR SuperMix, forward primer, Universal qPCR Primer, ROX reference dye and template cDNA. RNU6B was used as the internal control. The reactions were monitored using a preheated real-time instrument (ABI StepOne Plus). The PCR conditions were 2 min at $50^{\circ} \mathrm{C}$ and 10 min at $95^{\circ} \mathrm{C}$, followed by 40 cycles of $95^{\circ} \mathrm{C}$ for 4 s and $57^{\circ} \mathrm{C}$ for 30 s .

HUVEC transfection with miR-663-LNA antagonist or pre-miR-663 precursor

HUVECs were transfected with miRCURY LNA (Locked Nucleic Acids) (miR-663 LNA and scrambled miR as a control, Exiqon) or miRNA precursor ( pre-miR-663 and pre-miR-control, Ambion) in a dose-dependent manner (from 25 nM to 100 nM or 10 nM to 30 mM , respectively) using Oligofectamine (Invitrogen) as described previously ${ }^{7}$. One day following transfection, cells were exposed to shear stress. The antagonistic efficacy of miRNA-LNA was assayed by qPCR.

## Monocyte adhesion assay

One day post-transfection, HUVECs were exposed to OS or LS for 1 day and monocyte adhesion was determined using THP-1 cells as we previously described ${ }^{7-8}$.

One day post-transfection, HUVECs were exposed to OS or LS for 1 day and Caspase-3 activity in the cell lysate was then determined by using the Caspase-3 Fluorescent Assay Kit (BD Biosciences) according to the manufacturer's instructions.

## Preparation of protein samples and Western blot analysis

Following experimental treatments, cell lysates were prepared and analyzed by Western blot analysis as described previously by us ${ }^{8}$. Equal aliquots of protein samples ( $20 \mu \mathrm{~g}$ each) were resolved on an SDS-PAGE gel, transferred to a polyvinylidene difluoride membrane and incubated with antibodies specific to ICAM-1, VCAM-1 and Actin (Santa Cruz).
mRNA microarray analysis and qPCR validation

Total RNA samples were extracted using miReasy mini kit (QIAQEN) from HUVECs transfected with miR-663-LNA or control miR-LNA after 24 hr shear exposure (LS or OS). All RNA samples passed quality control using Agilent BioAnalyze NanoChip before the gene chip study was carried out in the Emory Biomarker Service Center at the Emory University. A HumanHT-12 v3 Expression BeadChip array (Illumina) was used in this study and the data was statistically analyzed by SAM (Significance Analysis of Microarrays ${ }^{23}$ ). The differentially expressed genes were identified as significant if expression level in OS-exposed ECs was different by more than $50 \%$ of LS and at the false discovery rate of $10 \%$ ( $q$-value). Total RNA of each sample was reverse transcribed into cDNA using SuperScript III and random primers (Invitrogen) as we described. Briefly, qPCR was performed on selected genes using Brilliant II SYBR Green QPCR Master Mix (Stratagene) with custom designed primers on a Real-Time PCR System (ABI StepOne Plus). All qPCR results were normalized based on 18S RNA
expression in each sample. Fold changes between samples were determined using the $\Delta \Delta C t$ method ${ }^{24}$

## Resutls

Identification of miRNAs differentially regulated by OS and LS

To determine whether miRNA expression is changed in ECs exposed to OS compared to LS, we performed shear stress experiments in cultured HUVECs. We collected total RNA from HUVECs exposed to OS or LS for 1 day, and carried out microarray analysis using $\mu$ Paraflo microfluidic chip containing 856 human miRNA probes. This analysis revealed that 244 miRNAs of the 856 examined were detectable in HUVECs. Of the 244 detected miRNAs, 21 miRNAs (9 higher and 12 lower) were differentially expressed by more than $50 \%(\mathrm{p}<0.05)$ in OS-exposed cells compared to LS (Table 7.1).

Table 7.1 Shear sensitive miRNA

| miRNA | Fold change <br> (OS/LS) log2 scale | p-value |
| :--- | :---: | :---: |
| hsa-miR-663 | 2.02 | 0.005 |
| hsa-miR-1275 | 0.95 | 0.015 |
| hsa-miR-424* | 0.42 | 0.026 |
| hsa-miR-1469 | 1.66 | 0.029 |
| hsa-miR-638 | 1.79 | 0.031 |
| hsa-miR-421 | 0.95 | 0.032 |
| hsa-miR-939 | 1.64 | 0.043 |
| hsa-miR-149* | 2.51 | 0.046 |
| hsa-miR-1231 | 1.89 | 0.049 |
|  |  |  |
| hsa-miR-151-3p | -0.54 | 0.005 |
| hsa-miR-320a | -1.03 | 0.006 |
| hsa-miR-320c | -1.08 | 0.006 |
| hsa-miR-320d | -1.18 | 0.006 |
| has-miR-139-5p | -1.87 | 0.008 |
| hsa-miR-320b | -1.20 | 0.019 |
| hsa-miR-192 | -1.41 | 0.023 |
| hsa-miR-125a-3p | -0.84 | 0.023 |
| hsa-miR-191 | -0.19 | 0.027 |
| hsa-miR-194 | -1.12 | 0.033 |
| hsa-miR-195 | -0.54 | 0.032 |
| hsa-miR-27b | -0.89 | 0.048 |

To validate the microarray data, qPCR was used as an independent measure of miRNA expression. Of the 21 miRNAs identified by the array result, we selected top 13 based on their potential abundance and fold-stimulation as determined by the microarray data (Table 7.1). In addition, we also examined miR-126 expression since it is a well-known endothelial specific miRNA ${ }^{17}$ although it was not shear-sensitive in our array result. Ten miRNAs of the 13 examined were confirmed by qPCR results as OS-sensitive (Figure 7.1). These include miR-663, miR-1275, and miR-638 that were up-regulated, while miR-320a,b,c, miR-151-3p, miR-195, miR-27b, and miR-139-5p that were downregulated by OS compared to LS in HUVECs. As expected, miR-126 was highly expressed in ECs but its level was not altered by OS compared to LS.


Figure 7.1 Validation of shear-sensitive miRNAs by qPCR. HUVECs were exposed to LS or OS for 24 hr , and total RNA was collected for miRNAs expression analysis either by microarray or qPCR. miRNAs expression were normalized by RNU6B and were shown as mean $\pm$ SEM ( $n=4$ for $q P C R$ and $n=3$ for microarray), * $p<0.05$ (OS vs LS by qPCR), and ${ }^{\ddagger}<0.05$ (OS vs LS by microarray)

## Modulation of miR-663 expression in HUVECs

Since miR-663 expression was the most OS-sensitive miRNA, we decided to study its functional significance in ECs. Two approaches were used to modulate miR-663 expression: 1) inhibition of miR-663, we transfected HUVECs with miR-663-LNA or control-LNA, 2) overpression of miR-663, HUVECs were transfected with pre-miR-663 or pre-miR-control. Transfection of miR-663-LNA decreased while pre-miR-663 increased endogenous miR-663 level in a concentration-dependent manner (Figure 7.2A, 7.3A). Furthermore, miR-663-LNA (100nM) significantly inhibited OS-induced miR-663 expression (Figure 7.2B), demonstrating that this is an efficient approach to inhibit miR663 in HUVECs. In addition, pre-miR-663 (10 nM) dramatically increased miR-663 expression both in LS and OS condition (Figure 7.3B).
miR-663 plays an important role in OS-induced monocyte adhesion but not in apoptosis of endothelial cells.

To test whether miR-663 plays a key role in endothelial function, we examined whether miR-663-LNA prevents two well-characterized OS-induced events in endothelial cells: inflammation ${ }^{7-8}$ and apoptosis ${ }^{25}$ as measured by monocyte adhesion and caspase-3 activity assays, respectively. As shown previously, exposure of HUVECs to OS increased monocyte adhesion to ECs by more than 4-fold compared to that of LS in cells treated with control-LNA (Figure 7.2C). However, miR-663-LNA treatment significantly inhibited OS-induced monocyte adhesion by $\sim 70 \%$ of the control-LNA group. Next, we examined the effect of miR-663-LNA on OS-induced caspase-3 activity. As expected, OS exposure significantly increased caspase-3 activity compared to LS in HUVEC treated with control LNA. Unlike monocyte adhesion study, however, miR-663-LNA did not affect OS-induced caspase-3 activity.


Figure 7.2 Inhibition of miR-663 by miR-663-LNA mediates OS-induced monocyte adhesion to ECs without affecting endothelial apoptosis. A, Endogenous miR-663 expression is inhibited by miR-LNA transfection. HUVECs were transfected with miR-663-LNA at 25nM, 50nM, and 100nM. As a control, Control-LNA (100nM) was also transfected. miR-663 expression was assayed by qRT-PCR and normalized by RNU6B. Data shown as mean $\pm$ SEM ( $n=3$ ), * $p<0.05$ vs. control group. $B$, miR-663-LNA inhibits OS-induced miR-663 expression. HUVECs were transfected with miR-663-LNA or Control-LNA (100 nM) one day before shear exposure (LS or OS for 24 hr ). miR-663 expression was assayed by qRT-PCR and normalized by RNU6B. Data shown as mean $\pm$ SEM. * $p<0.05$ vs Control-LNA in LS-exposed cells and ${ }^{\ddagger}<0.05$ vs Control-LNA in OS-exposed cells. C, miR-663 mediates OS-induced monocyte adhesion. One day before shear experiments (LS or OS, 24hr), ECs were transfected with control miR-LNA or miR-663-LNA (100nM). After shear, monocyte adhesion assay was performed. Representative images are shown and quantified results are shown as mean $\pm$ SEM ( $n=3$ ), * $p<0.05$ vs Control in LS-exposed cells and ${ }^{\ddagger}<0.05$ vs Control OSexposed cells. D. miR-663 does not mediate OS-induced caspase-3 activation. Transfected HUVECs with control LNA or miR-663-LNA were exposed to OS or LS for 1 day, and caspase-3 activity was determined using the cell lysate. Data shown as mean $\pm$ SEM. * $p<0.05$ vs control-LNA in LS-exposed cells.


Figure 7.3 Overexpression of miR-663 partially induced monocyte adhesion to ECs without affecting endothelial apoptosis A, Endogenous miR-663 expression is increased by pre-miRNA transfection. HUVECs were transfected with pre-miR-663 at $10 \mathrm{nM}, 20 \mathrm{nM}$, and 30nM. miR-663 expression was assayed by qRT$P C R$ and normalized by RNU6B. Data shown as mean $\pm$ SEM ( $n=3$ ), * $p<0.05$ vs. control group. B, pre-miR-663 increases miR-663 expression under shear condition. HUVECs were transfected with pre-miR-663 or pre-miR-control (10nM) one day before shear exposure (LS or OS for 24 hr ). miR-663 expression was assayed by qRT-PCR and normalized by RNU6B. Data shown as mean $\pm$ SEM. * $p<0.05$ vs pre-miR-control in LS-exposed cells. C, pre-miR-663 partially induced monocyte adhesion under LS conditon. One day before shear experiments (LS or OS, 24hr), ECs were transfected with pre-miR-663 or pre-miR-control (10nM). After shear, monocyte adhesion assay was performed Representative images are shown and quantified results are shown as mean $\pm$ SEM ( $n=3$ ), * $p<0.05$ vs pre-miR-control in LS-exposed cells. D. miR-663 does not mediate OS-induced caspase-3 activation. Transfected HUVECs with pre-miR-663 or pre-miR-control (10nM) were exposed to OS or LS for 1 day, and caspase-3 activity was determined using the cell lysate. Data shown as mean $\pm$ SEM. * $p<0.05$ vs pre-miR-control in LS-exposed cells.

In addition, we also performed a DNA fragmentation assay, another assay for cell apoptosis, to examine whether miR-663 is not involved in apoptosis. Again, as expected, DNA fragmentation significantly elevated in OS treated cells compared to LS, but miR-663-LNA didn't affect OS-induced DNA fragmentation (Figure 7.4). These results suggest that miR-663 has a specific role in OS-induced inflammatory pathway, but not in apoptosis pathway. Moreover, overexpression of miR-663 in EC exposed to LS partially increased monocyte adhesion (Figure 7.3C) but didn't affect LS-inhibited caspase activity (Figure 7.3D). These further support that the expression of miR-663 mediates monocyte adhesion modulating by shear stress.


Figure 7.4 miR-663 does not mediate OS-induced DNA fragmentation. BrdU labeled HUVECs were transfected with control LNA or miR-663-LNA (100 nM) and exposed to OS or LS for 1 day, DNA fragmentation by ELISA assay was determined using the fraction of cell cytosol. Data shown as mean $\pm$ SEM. * $p<0.05$ vs ControlLNA in LS-exposed cells.
miR-663 specifically altered ICAM-1 but not VCAM-1 expression in ECs

To investigate how miR-663 regulated monocyte adhesion, we examined whether miR663 regulates the expression of adhesion molecules, such as ICAM-1 and VCAM-1, in

ECs transfected with miR-663. As shown in Figure 7.5, miR-663-LNA significantly decreased ICAM-1 protein expression while VCAM-1 was not affected, suggesting a potential mechanism that the effect of miR-663 on OS-induced monocyte adhesion could be mediated by ICAM-1. However, the total protein expression of ICAM-1 didn't show significant difference between LS and OS (Figure 7.5) and failed to correlate to OSinduced monocyte adhesion.


Figure 7.5 miR-663-LNA inhibits ICAM-1 but not VCAM-1 expression HUVECs were transfected with miR-663-LNA or Control-LNA (100 nM) one day before shear exposure (LS or OS for 24 hr ). Total protein were collected and protein expression of ICAM-1 and VCAM-1 were examined by Western blot. Quantatification of the blot were shown as mean $\pm$ SEM. * $p<0.05$ vs Control-LNA in LS-exposed cells and ${ }^{\ddagger}<0.05$ vs Control-LNA in OS-exposed cells.
miR-663 doesn't involved TNF- $\alpha$-induced monocyte adhesion as well as ICAM-1 expression.

To test whether miR-663 is specifically in OS-induced cellular inflammation, we performed a control experiment to examine the role of miR-663 in cytokine-induced EC inflammation. TNF- $\alpha$ dramatically induced monocyte adhesion by 8 folds (Figure 7.6) and increased ICAM-1 and VCAM-1 expression robustly. However, miR-663-LNA didn't affect TNF- $\alpha$ induced monocyte adhesion and adhesion molecules expression (Figure 7.6), demonstrating the specific role of miR-663 in OS- but not cytokine-induced EC inflammation.


Figure 7.6 A, miR-663 does not mediate TNF- $\alpha$-induced monocyte adhesion. One day before TNF- $\alpha$ treatment, HUVECs were transfected with control miR-LNA or miR-663-LNA (100nM). TNF- $\alpha$ (40ng/ml) treated cells were incubated for overnight (16hr), and then monocyte adhesion assay was performed. Representative images are shown and quantified results are shown as mean $\pm$ SEM ( $n=3$ ), * $p<0.05$ vs Control in LS-exposed cells. B, HUVECs were transfected with miR-663-LNA or Control-LNA (100 nM) one day before TNF- $\alpha$ treatment (40ng/ml, 16hr). Total protein were collected and protein expression of ICAM-1 and VCAM-1 were examined by Western blot.
miRNA-663 altered mRNA expression in ECs exposed to OS

The function of miR-663 has not been reported previously. Given the role of miR-663 in OS-induced inflammation, the potential target of miR-663 appears to be adhesion molecules. However, since miR-663-LNA significantly inhibited ICAM-1 but not VCAM-1 expression as shown in Figure 7.5, the sequence of miR-663 is not complementary to ICAM-1 3'-UTR, suggesting that ICAM-1 can not be the direct target of miR-663. In addition, extensive in silico analysis using web-based programs including TargetScan ${ }^{26}$ and MiRanda ${ }^{27}$ to search for potential targets of miR-663 produced no obviously identifiable pro-inflammatory genes. These results suggested that miR-663 may regulate a network of genes, rather than a single or a small number of target genes to regulate inflammatory response.

To test this hypothesis, we performed an additional genome-wide microarray to identify mRNAs regulated by miR-663 in HUVECs exposed to OS. ECs were transfected with control miR-LNA or miR-663-LNA and then subjected to either LS or OS for 24 hr . Microarrays were then performed using Illumina BeadChip and the data was first analyzed to determine gene expression profiles between cells exposed to OS and LS in control or miR-663-LNA-treated cells. As shown in the heatmap (Figure 7.7A), OS upregulated 1,056 gene probes, while down-regulating 903 compared to LS in control-LNA treated ECs. Among those, many well-studied shear-sensitive genes identified in our array data, including KLF2, KLF4, eNOS, BMP4, ANGPT2 and VCAM-1, were shown to be regulated in a manner that is consistent with the previous findings ${ }^{4,6}$, providing confidence on our current array data. We also found that 854 and 698 gene probes were up- and down-regulated, respectively, by OS compared to LS in miR-663-LNA treated ECs (detailed gene list has been deposited to GEO:GSE20739).


Figure 7.7 Gene expression profiles and qPCR validation between LS and OS either treated with control miR-LNA or miR-663-LNA. HUVECs were transfected with miR-663-LNA or control miR-LNA (100 nM) one day before shear experiments (LS or OS for 24 hr ). Total RNA samples were collected and microarray analysis was performed. Genes which showed differential expression are presented as heatmaps. Expression of shown genes is significantly different in between the two compared groups in A, B and C by more than $50 \%$ at a false discovery rate of $1 \%$ ( $A$ and $B$ ) and $10 \%$ (C). $D$, Selected genes were further validated by $q P C R$. mRNAs expression were normalized by $18 S$ and were shown as mean $\pm$ SEM ( $n=3$ for qPCR * $p<0.05$ (miR-663 LNA-OS vs Control LNA-OS),

More importantly, we determined which gene expression was altered in a miR-663dependent manner by comparing miR-663-LNA treated ECs to control-LNA group under OS condition. The results showed that 32 genes were up-regulated, while 3 were downregulated in cells treated with OS and the miR-663 inhibitor (Figure 7.7C and Table 7.2). In contrast, only one gene exhibited a significant difference between control-LNA and miR-663-LNA in LS-treated ECs (Table 7.2). Next, we validated the microarray results by qPCR. We selected 10 genes for qPCR validation using total RNA samples from ECs treated with miR-663-LNA or Control-LNA under OS condition. Our qPCR results validated 7 of 10 genes including KLF4, FOSB, SLC7A5 and NAV2 (Figure 7.7).

Table 7.2 mRNAs regulated by miR-663

| Gene ID | Gene Name | $\begin{gathered} \text { Fold Change } \\ \text { (miR-663-LNA/Control-LNA) } \end{gathered}$ | q -value(\%) | Direct target predicted by TargetScan |
| :---: | :---: | :---: | :---: | :---: |
| Gene differentially expressed (control-LNA-OS vs miR-663-LNA OS) |  |  |  |  |
| ILMN_1668125 | MYRIP | 1.55 | 0.00 | No |
| ILMN_1676984 | DDIT3 | 1.53 | 0.00 | No |
| ILMN_1692219 | RAB11FIP1 | 1.52 | 0.00 | No |
| ILMN_1700081 | FST | 5.48 | 6.14 | No |
| ILMN_1666733 | IL8 | 3.51 | 6.14 | No |
| ILMN_2374865 | ATF3 | 2.72 | 6.14 | No |
| ILMN_1696537 | DDIT4L | 2.61 | 6.14 | No |
| ILMN_1751607 | FOSB | 2.31 | 6.14 | Yes |
| ILMN_2137789 | KLF4 | 2.20 | 6.14 | No |
| ILMN_2314169 | PTHLH | 2.13 | 6.14 | No |
| ILMN_2150851 | SERPINB2 | 1.97 | 6.14 | No |
| ILMN_1677511 | PTGS2 | 1.79 | 6.14 | No |
| ILMN_1702487 | SGK | 1.78 | 6.14 | No |
| ILMN_1699651 | IL6 | 1.73 | 6.14 | No |
| ILMN_1722718 | BMP2 | 1.70 | 6.14 | No |
| ILMN_1693014 | CEBPB | 1.65 | 6.14 | Yes |
| ILMN_1811258 | RELB | 1.65 | 6.14 | No |
| ILMN_1720373 | SLC7A5 | 1.64 | 6.14 | Yes |
| ILMN_1759513 | RND3 | 1.63 | 6.14 | No |
| ILMN_1739393 | SELE | 1.61 | 6.14 | No |
| ILMN_2399300 | NAV2 | 1.61 | 6.14 | Yes |
| ILMN_1677092 | GEM | 1.58 | 6.14 | No |
| ILMN_1765641 | SEMA3A | 1.57 | 6.14 | No |
| ILMN_2336094 | ODZ3 | 1.55 | 6.14 | No |
| ILMN_1781285 | DUSP1 | 1.53 | 6.14 | No |
| ILMN_1697227 | USP36 | 1.52 | 6.14 | No |
| ILMN_1787815 | TRIB3 | 1.52 | 6.14 | No |
| ILMN_2242900 | IL1RL1 | 1.50 | 6.14 | No |
| ILMN_1796417 | ASNS | 1.73 | 7.52 | No |
| ILMN_1751465 | BNC1 | 1.51 | 7.52 | No |
| ILMN_1673566 | ADAMTS1 | 1.54 | 9.52 | No |
| ILMN_1671791 | PCK2 | 1.52 | 9.52 | No |
| ILMN_1784540 | KBTBD2 | 0.52 | 0.00 | No |
| ILMN_1731699 | RAB15 | 0.67 | 10.58 | No |
| ILMN_2219767 | MYCN | 0.64 | 10.58 | No |
| Gene differentially expressed (control-LNA-LS vs miR-663-LNA LS) |  |  |  |  |
| ILMN_1784540 | KBTBD2 | 0.52 | 0 | No |

Furthermore, we determined which of the 35 genes ( 32 up-regulated and 3 downregulated) in OS-treated cells were potential targets of miR-663 by in silico analysis using TargetScan (Table 7.2) and MiRanda (data not shown). This analysis revealed 4 of 35 genes are potential direct targets of miR-663: SLC7A5, NAV2, and two transcription factors FOSB and CEBPB. To test our hypothesis whether these 35 genes regulated by miR-663 play a key role in OS-mediated inflammatory response, we carried out DAVID (Database for Annotation, Visualization and Integrated Discovery) analysis. The functional annotation result showed that inflammatory responses were indeed affected by miR-663 (Table 7.3).

Table 7.3 Functional Annotation for genes regulated by miR-663 under OS condition.

| Term | Count | $\%$ | $p$-Value |
| :--- | :---: | :---: | :---: |
| negative regulation of cellular process | 13 | $37.14 \%$ | $2.31 \mathrm{E}-06$ |
| organ development | 13 | $37.14 \%$ | $8.50 \mathrm{E}-06$ |
| regulation of cell proliferation | 9 | $25.71 \%$ | $9.24 \mathrm{E}-06$ |
| negative regulation of cell proliferation | 7 | $20.00 \%$ | $1.27 \mathrm{E}-05$ |
| inflammatory response | 6 | $17.14 \%$ | $4.75 \mathrm{E}-04$ |
| tissue development | 6 | $17.14 \%$ | $8.15 \mathrm{E}-04$ |
| epidermis development | 4 | $11.43 \%$ | 0.004192 |
| ectoderm development | 4 | $11.43 \%$ | 0.005121 |
| negative regulation of cellular metabolic process | 5 | $14.29 \%$ | 0.010025 |
| regulation of transcription, DNA-dependent | 12 | $34.29 \%$ | 0.011825 |

Moreover, additional cellular processes such as regulation of transcription and cell proliferation were also regulated by miR-663 (Table 7.3). Total of seven transcription factors (FOSB, CEBPB, DDIT3, ATF3, KLF4, BNC1 and MYCN) were identified as direct or indirect targets of miR-663 in OS-treated cells. These results suggest that miR-663 is
a shear-sensitive miRNA, regulating expression of many genes including the transcription factors, which in turn induce inflammatory response in ECs.

## Discussion

In this study, we identified 10 OS-sensitive miRNAs in cultured ECs by performing a genome-wide miRNA microarray and subsequent validation by qRT-PCR study (Figure 7.1). We next determined the functional importance of the most OS-sensitive miRNA, miR-663 as a pro-inflammatory gene. Using the miR-663 specific inhibitor (mi663-LNA), we found that miR-663 specifically mediated OS-induced monocyte adhesion to endothelial cells while it did not have any effect on OS-induced apoptosis (Figure 7.2). This observation was further supported by overexpression of miR-663 which partially induced monocyte adhesion in LS condition. We then performed an additional genomewide DNA microarray study to identify potential gene targets regulated by miR-663 in HUVECs since ICAM-1 downregualted by miR-663-LNA is not the direct target of miR663. From the study, we found 35 potential genes regulated (Table 7.2); however, in silico analysis such as Targetscan and MiRanda screening of these 35 genes showed that only 4 genes are predicted to be the potential target of miR-663. Among those miR663 regulated genes, several are transcription factors, including KLF4, FOSB, and ATF3, and could subsequently regulate a number of genes that are related to inflammatory responses.

Through microarray analysis, we identified 4 genes (FOSB, CEBPB, SLC7A5, and NAV2) that were up-regulated in miR-663-LNA treated ECs and were also predicted as potential targets of miR-663 by TargetScan (Table 7.2). These four genes fall in poorly conserved targets category, suggesting the species specificity in this study.

Interestingly, of 1639 potential targets of miR-663 by TargetScan, there are only 34 conserved sites while 2064 poorly conserved sites remain. This could be due to the species-specific expression of miR-663 discovered only in primates (Human, Chimpanzee, and Monkey). FOSB and CEBPB are transcription factors known to play roles in cell proliferation and inflammatory responses, respectively ${ }^{28-29}$. SLC7A5 acts as a L-type amino acid exchanger ${ }^{30}$ and NAV2 (neuron navigator 2 ) is involved in neuronal development ${ }^{31}$. Since their function in ECs is unclear, further studies need to be conducted. In addition, the rest of the miR-663-regulated genes that were not predicted as direct targets of miR-663 include several more transcription factors. Of note, KLF4 may play an important role in mediating the effects of miR-663. KLF2 and KLF4 are key regulators of endothelial function and are induced by atheroprotective shear stress ${ }^{32}$. Overexpression of KLF4 in human ECs significantly reduced TNF- $\alpha$ induction of E-selectin and VCAM-1, suggesting KLF4 has an anti-inflammatory effect through inhibiting adhesion molecules ${ }^{33}$. Recently, Villarreal et. al. also showed that a significant degree of mechanistic and functional conservation between KLF4 and KLF2 ${ }^{34}$. Collectively, these transcription factors have been shown to coordinate transcriptional programs important for vasodilation, anti-inflammation, and antithrombotic effect in vascular endothelial cells. Our data shows inhibiting miR-663 with miR-663-LNA restores KLF4 expression in ECs under OS. This warrants further investigation of the role of miR-663 and KLF4 in OS-induced inflammation.

Recently, miR-126 has been shown to regulate VCAM-1 expression while mediating TNF- $\alpha$-stimulated leukocyte adherence to ECs ${ }^{17}$. In addition, miR-31 and miR-17-3p were shown to regulate E-selectin and ICAM-1, respectively, in TNF-induced ECs ${ }^{35}$. Inhibition of miR-31 or miR-17-3p decreased neutrophil adhesion to ECs. In our study, we have shown miR-663 is involved in OS-induced monocyte binding, and miR-663-LNA
decreases ICAM-1 but not VCAM-1 expression (Figure 7.5). However, the total protein expression of ICAM-1 didn't show significant difference between LS and OS which failed to correlate the monocyte adhesion results. This controversial result has been reported previously ${ }^{36}$ and the effect of ICAM-1 on monocyte adhesion seems to be determined by the "effective" ICAM-1located in correct location rather than the total protein level. Collectively, these studies suggested the diverse regulation of miRNAs in a single biological process.

A critical unexplored aspect of miRNA function is the subtlety and complexity of gene regulatory networks. In a setting where one miRNA can regulate hundreds of genes and one gene can be regulated by a number of miRNAs, lack of knowledge in the mechanisms that govern miRNA-mRNA as well as miRNA-miRNA interactions is a major issue. Current prediction methods of miRNAs targets are based on the seeding region of miRNAs that bind to the target site(s) on a given mRNA by sequence complementarities. These methods also consider additional pairing by other nucleotides, which has been hypothesized to be important in miRNA binding ${ }^{37}$. The tolerance for extensive mismatches outside the seed region is indeed to increase the number of potential targets under miRNA control. Unfortunately, this complexity of interactions hinders the discovery of actual miRNA targets. In addition, factors contributing to the control of inducible or repressible miRNA expression and miRNAcoordinated expression with other regulatory molecules are not well-known and need to be investigated. For instance, depleting miRNA 221 and 222 in HUVEC affects the miRNA profile showing 9 up-regulated and 23 down-regulated miRNAs ${ }^{16}$. This observation demonstrates the complex network involving co-expression of miRNAs and transcription factors that can be altered by a single miRNA variations ${ }^{16}$. In our study, we examined 8 shear-sensitive miRNA expressions while knocking down miR-663 under

OS condition. The results showed the minor alteration of those 8 miRNAs, suggesting the complex network between miR-663 and other shear-sensitive miRNAs. Because of this complexity, any individual biological process mediated by miRNA may require a number of different factors that contribute to the final outcome. This type of synergy makes it difficult to identify a single gene as a direct mediator responsible for the effect of miRNA on any given biological function.

In summary, this is the first report identifying oscillatory shear-sensitive miRNAs in HUVECs and demonstrating miR-663 involvement in OS-induced cellular inflammation. We also demonstrate a gene network regulated by miR-663 under OS condition. Given the complexity of miRNA regulatory networks, miRNAs may be better a therapeutic target than mRNAs or proteins. We have recently demonstrated that disturbed flow conditions such as OS are causally linked to atherosclerosis development. The shearsensitive miRNAs, discovered in this study, could be potential therapeutic targets for the treatment of atherosclerosis.

## References

1. Ku DN, Giddens DP, Zarins CK, Glagov S. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis. 1985;5:293-302
2. VanderLaan PA, Reardon CA, Getz GS. Site specificity of atherosclerosis: Siteselective responses to atherosclerotic modulators. Arterioscler Thromb Vasc Biol. 2004;24:12-22
3. Nam D, Ni CW, Rezvan A, Suo J, Budzyn K, Llanos A, Harrison D, Giddens D, Jo H. Partial carotid ligation is a model of acutely induced disturbed flow, leading to rapid endothelial dysfunction and atherosclerosis. Am J Physiol Heart Circ Physiol. 2009;297:H1535-1543
4. Dai G, Kaazempur-Mofrad MR, Natarajan S, Zhang Y, Vaughn S, Blackman BR, Kamm RD, Garcia-Cardena G, Gimbrone MA, Jr. Distinct endothelial phenotypes evoked by arterial waveforms derived from atherosclerosis-susceptible and resistant regions of human vasculature. Proc Natl Acad Sci U S A. 2004;101:14871-14876
5. Dekker RJ, van Soest S, Fontijn RD, Salamanca S, de Groot PG, VanBavel E, Pannekoek H, Horrevoets AJ. Prolonged fluid shear stress induces a distinct set of endothelial cell genes, most specifically lung kruppel-like factor (klf2). Blood. 2002;100:1689-1698
6. McCormick SM, Eskin SG, McIntire LV, Teng CL, Lu CM, Russell CG, Chittur KK. DNA microarray reveals changes in gene expression of shear stressed human umbilical vein endothelial cells. Proc Natl Acad Sci U S A. 2001;98:89558960
7. Sorescu GP, Song H, Tressel SL, Hwang J, Dikalov S, Smith DA, Boyd NL, Platt MO, Lassegue B, Griendling KK, Jo H. Bone morphogenic protein 4 produced in endothelial cells by oscillatory shear stress induces monocyte adhesion by stimulating reactive oxygen species production from a nox1-based nadph oxidase. Circ Res. 2004;95:773-779
8. Sorescu GP, Sykes M, Weiss D, Platt MO, Saha A, Hwang J, Boyd N, Boo YC, Vega JD, Taylor WR, Jo H. Bone morphogenic protein 4 produced in endothelial cells by oscillatory shear stress stimulates an inflammatory response. J Biol Chem. 2003;278:31128-31135
9. Zhao Y, Srivastava D. A developmental view of microrna function. Trends Biochem Sci. 2007;32:189-197
10. van Rooij E, Olson EN. Micrornas: Powerful new regulators of heart disease and provocative therapeutic targets. J Clin Invest. 2007;117:2369-2376
11. Chen CZ, Li L, Lodish HF, Bartel DP. Micrornas modulate hematopoietic lineage differentiation. Science. 2004;303:83-86
12. Xu P, Guo M, Hay BA. Micrornas and the regulation of cell death. Trends Genet. 2004;20:617-624
13. Mendell JT. Miriad roles for the mir-17-92 cluster in development and disease. Cell. 2008;133:217-222
14. Suarez Y, Fernandez-Hernando C, Pober JS, Sessa WC. Dicer dependent micrornas regulate gene expression and functions in human endothelial cells. Circ Res. 2007;100:1164-1173
15. Kuehbacher A, Urbich C, Zeiher AM, Dimmeler S. Role of dicer and drosha for endothelial microrna expression and angiogenesis. Circ Res. 2007;101:59-68
16. Poliseno L, Tuccoli A, Mariani L, Evangelista M, Citti L, Woods K, Mercatanti A, Hammond S, Rainaldi G. Micrornas modulate the angiogenic properties of huvecs. Blood. 2006;108:3068-3071
17. Harris TA, Yamakuchi M, Ferlito M, Mendell JT, Lowenstein CJ. Microrna-126 regulates endothelial expression of vascular cell adhesion molecule 1. Proc Nat/ Acad Sci U S A. 2008;105:1516-1521
18. Ji R, Cheng Y, Yue J, Yang J, Liu X, Chen H, Dean DB, Zhang C. Microrna expression signature and antisense-mediated depletion reveal an essential role of microrna in vascular neointimal lesion formation. Circ Res. 2007;100:15791588
19. Wang KC, Garmire LX, Young A, Nguyen P, Trinh A, Subramaniam S, Wang N, Shyy JY, Li YS, Chien S. Role of microrna-23b in flow-regulation of rb phosphorylation and endothelial cell growth. Proc Natl Acad Sci U S A. 2010;107:3234-3239
20. Qin X, Wang X, Wang Y, Tang Z, Cui Q, Xi J, Li YS, Chien S, Wang N. Microrna19a mediates the suppressive effect of laminar flow on cyclin d1 expression in human umbilical vein endothelial cells. Proc Natl Acad Sci U S A. 2010;107:3240-3244
21. Boo YC, Jo H. Flow-dependent regulation of endothelial nitric oxide synthase: Role of protein kinases. Am J Physiol Cell Physiol. 2003;285:C499-508
22. Lin Y, Liu X, Cheng Y, Yang J, Huo Y, Zhang C. Involvement of micrornas in hydrogen peroxide-mediated gene regulation and cellular injury response in vascular smooth muscle cells. J Biol Chem. 2009;284:7903-7913
23. Tusher VG, Tibshirani R, Chu G. Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A. 2001;98:5116-5121
24. Schmittgen TD, Livak KJ. Analyzing real-time pcr data by the comparative $\mathrm{c}(\mathrm{t})$ method. Nat Protoc. 2008;3:1101-1108
25. Mueller CF, Widder JD, McNally JS, McCann L, Jones DP, Harrison DG. The role of the multidrug resistance protein-1 in modulation of endothelial cell oxidative stress. Circ Res. 2005;97:637-644
26. Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB. Prediction of mammalian microrna targets. Cell. 2003;115:787-798
27. Betel D, Wilson M, Gabow A, Marks DS, Sander C. The microrna.Org resource: Targets and expression. Nucleic Acids Res. 2008;36:D149-153
28. Milde-Langosch K. The fos family of transcription factors and their role in tumourigenesis. Eur J Cancer. 2005;41:2449-2461
29. Li H, Gade P, Xiao W, Kalvakolanu DV. The interferon signaling network and transcription factor c/ebp-beta. Cell Mol Immunol. 2007;4:407-418
30. del Amo EM, Urtti A, Yliperttula M. Pharmacokinetic role of I-type amino acid transporters lat1 and lat2. Eur J Pharm Sci. 2008;35:161-174
31. Clagett-Dame M, McNeill EM, Muley PD. Role of all-trans retinoic acid in neurite outgrowth and axonal elongation. J Neurobiol. 2006;66:739-756
32. Suzuki T, Aizawa K, Matsumura T, Nagai R. Vascular implications of the kruppellike family of transcription factors. Arterioscler Thromb Vasc Biol. 2005;25:11351141
33. Methe H, Balcells M, Alegret Mdel C, Santacana M, Molins B, Hamik A, Jain MK, Edelman ER. Vascular bed origin dictates flow pattern regulation of endothelial adhesion molecule expression. Am J Physiol Heart Circ Physiol. 2007;292:H2167-2175
34. Villarreal G, Jr., Zhang Y, Larman HB, Gracia-Sancho J, Koo A, Garcia-Cardena G. Defining the regulation of klf4 expression and its downstream transcriptional targets in vascular endothelial cells. Biochem Biophys Res Commun. 2009;391:984-989
35. Suarez Y, Wang C, Manes TD, Pober JS. Cutting edge: Tnf-induced micrornas regulate tnf-induced expression of e-selectin and intercellular adhesion molecule1 on human endothelial cells: Feedback control of inflammation. J Immunol. 2010;184:21-25
36. Conway DE, Williams MR, Eskin SG, McIntire LV. Endothelial cell responses to atheroprone flow are driven by two separate flow components: Low time-average shear stress and fluid flow reversal. Am J Physiol Heart Circ Physiol. 2010;298:H367-374
37. Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP. Microrna targeting specificity in mammals: Determinants beyond seed pairing. Mol Cell. 2007;27:91-105

## CHAPTER 8

## DISCUSSION

## Limitations

There are several limitations in the work presented here and are described in detail below.

## iMAEC lines

Cultured mouse endothelial cells, given the wide availability of transgenic mice, can be a useful tool to study endothelial cell biology. In this study, a simple method for generating iMAEC lines that maintain an endothelial phenotype was demonstrated. This method overcomes the proliferative limitation of mouse endothelial cells, allowing the expansion of a few cells from the mouse aorta. However, this method also has limitations. The primary MAEC were infected with retrovirus encoding polyoma middle $T$ antigen, a tumor antigen originally isolated from mouse polyoma virus ${ }^{1}$. Middle T antigen is tightly bound to the membrane ${ }^{2-3}$ and serves as a docking port for many signaling molecules that are necessary for cellular transformation in tissue culture ${ }^{4-5}$. Signaling molecules include Srcfamily protein tyrosine kinases (PTKs), protein phosphatase 2A (PP2A), PLC- $\gamma$, and ${\mathrm{PI} 3 K^{6}}^{6}$. More specifically, middle T antigen activates the PI3K/Akt signaling pathway ${ }^{7}$ which blocks apoptosis and prevents cell cycle withdrawal. Because middle T antigen constitutively activates proliferative signaling pathways, using iMAEC lines to study cell functions related to cell growth, proliferation, and apoptosis is not appropriate. In addition, the alteration of signaling pathways in iMAEC lines causes significant differences from primary MAEC. Finally, interpretation of iMAEC responses to stimuli should be examined carefully.

## Partial carotid ligation model

The mouse model of partial carotid ligation presented in this study showed a distinct flow pattern characterized by low and oscillatory flow in LCA after surgery. This model rapidly induced endothelial cell dysfunction within one week and atherosclerosis in two weeks. Because this model provides accelerated disease progression, several precautions and limitations should be addressed. First, the disturbed flow pattern generated in LCA is simpler than the naturally occurring flow disturbance at curves or bifurcations of the arterial tree. The different EC responses between the partial ligation model and naturally occurring flow disturbed flow may not only be due to acute flow disturbance, but may be resultant from different disturbed flow patterns. Second, partial carotid ligation induces robust atherosclerotic plaques in ApoE null mice fed a high-fat diet within two weeks suggesting a different pathology from naturally occurring atherosclerosis. Progression of atherosclerosis is chronic and takes months and years to develop in mice and humans, respectively. The accelerated atherosclerosis caused by partial carotid ligation saves time and effort, however the detailed mechanisms and features may be lost due to different patho-physiology. Finally, the method for endothelial RNA isolation from the carotid has its limitation. Low and oscillatory shear stress caused by partial ligation induces cellular inflammation which leads to leukocyte and neutrophil infiltration. Our results suggest that the endothelium is free of immune cell infiltration at two days postligation. However, significant macrophage/leukocyte adhesion to endothelium was observed in longer time points. To avoid the endothelial RNA contamination from immune cells, the time frame for intimal RNA preparation is limited to two days postligation.

The difference between in vivo and in vitro

This study was performed both in mouse carotid artery and in cultured HUVEC. The mechanosensitive miRNAs and mRNAs identified in vivo showed distinctive difference from those in vitro. Several reasons could explain the divergence: 1) in vivo study performed in mice is not compatible to those in human cells because of the species diversity. We identified several mouse-specific miRNAs such as miR-712 which is not feasible to be validated in human cells. The situation is similar to miR-663, a human specific miRNA, which can not be used in the mouse model to test the functional relevance. 2) The developed iMAEC line, created to prevent intraspecies inconsistency, shows that many genes appear to have been significantly dysregulated during culture. This brought a fundamental question of in vitro cell culture system. The environment from which these endothelial cells come is very different from culturing condition. This may have an effect on the endothelial cell phenotype and it affects the results in our study. Furthermore, in vivo condition, the endothelial cells are in close proximity to other cell types in a 3-dimentional interactive environment compared to the culture condition of pure endothelial cells in 2-dimentional cultured dish. 3) The flow pattern and shear intensity are dramatically different in mouse and in cultured cells. The shear patterns used in cultured cells are simplified waveform with average physiological shear magnitude of 15 dynes $/ \mathrm{cm}^{2}$ (LS);however, the shear stress waveform over a cardiac cycle in mouse carotid is pulsatile and can easily reach over 100 dynes $/ \mathrm{cm}^{2}$ during peak systole. Therefore, the gap between experimental conditions from in vitro and in vivo is the major limitation of this study.

## Functional validation in vivo

Because of the difference between in vitro and in vivo, it is more valuable to validate the functional importance of our novel miRNAs and mRNAs using mouse model than to do the study using cultured cells regarding the physiological relevance; however, the
transgenic mice of interest are not widely commercially available and require a huge effort to generate these mouse lines. In addition, the techniques for transient gene manipulation in vivo are still under developments. Therefore, to investigate the functional importance from the list of miRNAs and mRNAs by screening study performed in mice is just not feasible at this point.

## Predictions of miRNA target genes

In a setting where one miRNA can regulate hundreds of genes and one gene can be regulated by a number of miRNAs, lack of knowledge in the mechanisms that govern miRNA-mRNA as well as miRNA-miRNA interactions is a major issue. Current prediction methods of miRNAs targets are based on the seeding region of miRNAs that bind to the target site(s) on a given mRNA by sequence complementarities. These methods also consider additional pairing by other nucleotides, which has been hypothesized to be important in miRNA binding ${ }^{8}$. The tolerance for extensive mismatches outside the seed region increases the number of potential targets under miRNA control. Unfortunately, this complexity of interactions hinders the discovery of actual miRNA targets. In fact, the popular program such as TargetScan which is used for this purpose will show hundreds or thousands "potential" target genes of any given single miRNA. The miRNA-mRNA interaction should be validated by experiments such as the 3'UTR reporter assay ${ }^{9-10}$ and then by inspecting protein expression while altering the level of miRNA ${ }^{9}$. There is no systematic way to perform this type of study but the learning process of trial-and-error.

In addition, because of the complexity of biological system, any individual biological process mediated by miRNA may require a number of different factors that contribute to
the final outcome. This type of synergy makes it difficult to identify a single gene as a direct mediator responsible for the effect of miRNA on any given biological function.

## Future Directions

We provided the lists of novel mechanosensitive miRNAs and mRNAs in this study; however, the detailed mechanisms and functional importance have not been determined yet. Better understanding of gene regulation and disease progression require the mechanisms dissected from the current study. The findings described in this dissertation have laid the groundwork for additional future studies of mechanosensitive miRNAs and mRNAs in endothelial cells. Advancement of this work may focus on both in vitro and in vivo experimental approaches.

In vivo functional validation
A straightforward approach to validate the functional importance of mechanosensitive genes is to use the same mouse model by knocking down the gene of interest, known as the "loss-of-function" study. This approach could be achieved by acquiring the transgenic mouse with the deletion of specific gene in genomic locus. It could also be performed by infusion of pharmacologic inhibitors to the mouse for inhibiting the function or silencing the expression of the genes. Several studies have reported that the successful delivery of targeting siRNA for gene silencing is practical ${ }^{11-13}$; however, the delivery of RNAi to endothelial cells in specific regions is a major challenge. In our mouse model, we create a disturbed flow pattern locally in LCA by partially carotid ligation. The ideal condition to examine gene function would be to knockdown the gene of interest specifically in the endothelium of carotid arteries. Local RNAi delivery techniques are currently being developed in our lab and the procedure is shown in Figure 8.1 as a proof of concept.


Figure 8.1 Experimental procedure of RNAi delivery to carotid artery.

RNAi molecules were mixed with transfection reagents and directly injected to carotid artery. Temporary ligation of the carotid was used to stop the blood flow and loss of materials. The delivery of RNAi specifically to endothelium through the use of this technique has been demonstrated by imaging the fluorescence labeling siRNA molecules as shown in figure 8.2. This method for locally delivery of siRNA appears to be convincing while more control experiments need to be done to validate the efficacy of this new technique.


Figure 8.2 Delivery of siRNA to carotid endothelium. Representative examples of carotid tissues obtained from Cy3-labeled nontargeted-siRNA-transfected (B, C) or untransfected (A) mouse carotid artery. The En-Face carotid tissue observed using confocal microscopy [blue fluorescence of nuclear (DAPI), red fluorescence of Cy3labeled siRNAs, green fluorescence of elastic tissue]. Note the presence of Cy3labelded siRNA in the endothelial cells in $B$ and $C$.

Several types of inhibiting molecules can be applied by this technique including lentiviralbased shRNA for silencing mRNA or miRNA ${ }^{14-17}$. In addition, LNA oligonucleotides could also been locally or systematically administrated to mouse to suppress the function of miRNA as described previously ${ }^{18-19}$. Overall, dissecting the list of novel mechanosensitive miRNAs and mRNAs regarding the function significance using in vivo knockdown technique would further expand the contribution of this dissertation.

## Studying molecular mechanisms using cell culture

To support and explain the significance of the in vivo functional study, it requires detailed investigation of underlying molecular mechanisms. Given the complicated environment in vivo, the mechanistic study is difficult to design and perform in animal. In Chapter 3, the method we described to generate the iMAEC lines could be used to study the underlying molecular mechanisms of specific miRNA or mRNA. The iMAEC lines provide
a useful tool to study the mechanisms in the absence of specific miRNA and mRNA granted that the corresponding transgenic mouse is available.

Identified target genes and regulating network of miRNA
As we discussed in Chapter 7, the current method to find the target genes of miRNA only based on sequence complimentary. It generates a long list of predicted target genes of single miRNA with a large portion of false-positive candidates. Since we believe that the regulation of miRNA seems to be a tuning process involving a set of genes which cooperatively work as a network, the individual target gene(s) of specific miRNA still need to be identified. For a selected miRNA, the potential target genes based on sequence prediction could be confirmed by 3'UTR reporter assay and by checking protein expression levels after modulating miRNA levels.

## Summary

Cardiovascular disease is the leading cause of death among developed countries and is rapidly becoming the major cause of death in the developing world ${ }^{20}$. Atherosclerosis is a major contributor to cardiovascular disease and accounts for an estimated one-third of deaths worldwide ${ }^{21}$. In an effort to develop effective treatments for this pervasive pathology, research is now focused on the mechanisms of atherogenesis. In order to address the hemodynamic components of disease pathogenesis, researchers have focused on mechanotransduction of flow-dependent shear stress in the vascular endothelium as a source of novel pathological mechanisms ${ }^{22-23}$. Understanding how unidirectional, laminar blood flow protects vessels from atherogenesis, while disturbed, oscillatory blood flow promotes it, stands to provide enormous insight into disease pathogenesis and may provide powerful, specific new therapies for cardiovascular disease intervention.

The overall objective of this dissertation was to determine which microRNAs (miRNAs) and mRNAs are regulated by different flow conditions in vascular endothelial cells in vitro and in mouse carotid artery endothelium in vivo, and to identify which miRNAs mediate flow-dependent vascular inflammation. These results allow us to identify novel targets either for therapeutic intervention or for early clinical detection of atherosclerosis. The overall hypothesis of this project was that oscillatory shear (OS) and laminar shear (LS) stress differentially alter the expression of mechanosensitive miRNAs each capable of regulating complex networks of gene expression, which in turn leads to inflammation in endothelial cells. This hypothesis was tested using both in vitro and in vivo approaches, high throughput microarray analyses, and functional validation of specific targets by PCR as outlined in these three specific aims:

- Specific Aim 1: Develop a novel mouse model of experimentally inducible disturbed flow and a method for isolating endothelial cell RNA with intensive validation of minimal contamination, to examine the expression profiles of miRNA and mRNA in vivo.
- Specific Aim 2: Identify flow-sensitive miRNAs and mRNAs in partially ligated murine carotid endothelium and cultured HUVEC.
- Specific Aim 3: Investigate the role of mechanosensitive miRNA-663 in HUVEC undergoing OS-induced cellular inflammation.

To achieve these specific aims, our first developed a mouse model which modifies the flow pattern in the left common carotid artery. We ligate three of the four caudal branches of the LCA - left external, left internal, and occipital arteries. We then
characterized the low and oscillatory shear stress induced by the partial carotid ligation procedure. This procedure induces accelerated endothelial dysfunction in one week and advanced atherosclerotic plaques by 2 weeks in ApoE knockout mice fed a high fat diet ${ }^{24}$. Using this model, I developed a simple method to isolate endothelial RNA from the partially ligated left common carotid as well as the contralateral right common carotid ${ }^{24}$. This method was then fine-tuned to provide total RNA samples in sufficient quantity with little to no appreciable contamination from cells populating the underlying medial and adventitial layers of the artery. In addition, the time points (12hr and 48hr post-ligation) we selected for RNA samples collection are free of infiltrating immune cells common in areas of disturbed flow. In addition, I also developed a method to generate iMAEC line for use in vitro for validation purpose. The methods used to develop iMAEC lines described in this dissertation can be applied to generate additional MAEC lines, using various knockout mouse lines, to provide a critical tool to investigate the vascular biology and pathobiology.

To investigate the mRNA expression profiles in vivo, we carried out genome-wide microarray assays using endothelial RNA isolated from the flow-disturbed left and contralateral right common carotid arteries (LCA and RCA) in wildtype C57BL/6 mice. We found that 62 and 523 genes significantly changed in flow-disturbed LCA endothelium compared to the RCA by 12 hr and 48 hr post-ligation respectively. The array results for 44 out of 46 genes were validated by qPCR, including well-known shearresponsive genes, Klf2, eNOS, and BMP4, as well as numerous novel mechanosensitive genes such as Klk10, Dhh, Jam2 and Lmo4. Lmo4 protein was specifically expressed in the flow disturbed mouse aortic arch endothelium and in human coronary endothelium in an asymmetric pattern. Comparison of in vivo, ex vivo, and in vitro endothelial gene expression patterns suggests that many mechanosensitive genes found in vivo appear
to have been significantly dysregulated during culture. Gene ontology analyses revealed that disturbed flow induced cell proliferation and morphology by 12 hr , followed by inflammatory and immune responses by 48 hr .

To provide further insight into the possible mechanisms of observed mechanosensitive gene changes we performed microarrays looking at miRNA expression profiles using RNA samples isolated as described above. We found that 27 and 18 miRNAs were significantly either up- or down-regulated, respectively, in flow-disturbed LCA endothelium compared to the RCA 48 hours post-ligation. However, only 4 miRNAs showed significant differences between LCA and RCA as of 12 hours post-ligation. The array results were also validated by qPCR confirming several mechanosensitive miRNAs such as miR-23b, miR-29b, miR-30c, and miR-712, which have not been reported previously. Further analyses between mechanosensitive miRNAs and mRNAs reveal approximately 10 to $15 \%$ (25/295, and $31 / 228$ ) of mechanosensitive mRNAs found to be potential targets of shear-sensitive miRNAs based on the sequence complementary prediction by TargetScan. This also suggests the significance of these mechanosensitive miRNAs and mRNAs identified in this dissertation and these targets could play an important role involving in the mechanisms underling the effect of shear stress on cardiovascular disease.

To further study the functional importance of mechanosensitive miRNAs, we examined the miRNAs expression profiles in cultured HUVEC exposed to OS or LS for 24hr. Given the difference between in vitro and in vivo system, the new data set was obtained and detailed functional validation was performed. After validation by PCR, we identified 10 OS-sensitive (3 up- and 7 down-regulated by OS) miRNAs. Of those, the most significant OS-induced miRNA, miR-663, was selected for determining its functional别
importance. miR-663 plays a specific role in endothelial inflammatory response, but not in apoptosis, in an ICAM-1 dependent manner. In order to identify potential target genes of miR663, we carried out an additional genome-wide DNA microarray, which uncovered 35 potential miR-663 targets, including a network of inflammatory genes and transcription factors such as KLF4, ATF3, and FOSB. Since these transcriptional factors have been known to serve as master regulators in several biological functions including inflammation, these results suggest that miR-663 is a shear-sensitive miRNA, regulating expression of many genes including the transcription factors, which in turn may induce inflammatory response in ECs.

Collectively, OS significantly altered the gene expression profiles including miRNA and mRNA compared to LS. These mechanosensitive genes regulated by miRNAs seem to be involved in OS-induced EC inflammation in the earliest stage of atherosclerosis development. In particular, miR-663, an OS-induced miRNA, is shown to mediate cellular inflammation by regulating a network of genes further supporting the notion that flow-sensitive miRNAs and mRNA play important roles in disturbed flow-induced cardiovascular diseases.

## Conclusions

The findings from the partial carotid ligation model show that acute exposure to disturbed flow results in accelerated endothelial dysfunction and atherosclerosis in vivo. High-throughput microarrays reveal distinct expression profiles of both miRNAs and mRNAs in mouse endothelium exposed to disturbed flow suggesting the regulatory mechanisms by which miRNAs regulate mRNAs resulting in EC inflammation, the earliest stage of atherosclerosis. While the similarity between the in vitro and in vivo
results demonstrate the validity and complementary nature of both systems, the dysregulated or lost genes in cultured endothelial cells highlights the critical importance of in vivo models in studying flow-dependent vascular biology and atherosclerosis. This in vivo study provides new insight into the mechanisms of flow induced atherosclerosis. In particular, I first reported that an upregulation of miR-663 due to OS in HUVEC causes monocyte adhesion, but not endothelial apoptosis, in an ICAM-1 dependent manner. miR-663 regulates a group of genes including transcriptional factors and inflammatory genes which may also mediate OS-induced EC inflammation. Collectively, revealing the profiles of miRNAs and mRNAs regulated by hemodynamic flow provides a better understanding in vascular diseases and provide potential target for developing effective preventative therapeutic approaches in cardiovascular diseases.

## References

1. Schaffhausen BS, Roberts TM. Lessons from polyoma middle $t$ antigen on signaling and transformation: A DNA tumor virus contribution to the war on cancer. Virology. 2009;384:304-316
2. Ito Y. Polyoma virus-specific 55k protein isolated from plasma membrane of productively infected cells is virus-coded and important for cell transformation. Virology. 1979;98:261-266
3. Dilworth SM, Hansson HA, Darnfors C, Bjursell G, Streuli CH, Griffin BE. Subcellular localisation of the middle and large $t$-antigens of polyoma virus. EMBO J. 1986;5:491-499
4. Treisman R, Novak U, Favaloro J, Kamen R. Transformation of rat cells by an altered polyoma virus genome expressing only the middle-t protein. Nature. 1981;292:595-600
5. Carmichael GG, Schaffhausen BS, Dorsky DI, Oliver DB, Benjamin TL. Carboxy terminus of polyoma middle-sized tumor antigen is required for attachment to membranes, associated protein kinase activities, and cell transformation. Proc Natl Acad Sci U S A. 1982;79:3579-3583
6. Cheng J, DeCaprio JA, Fluck MM, Schaffhausen BS. Cellular transformation by simian virus 40 and murine polyoma virus $t$ antigens. Semin Cancer Biol. 2009;19:218-228
7. Dahl J, Jurczak A, Cheng LA, Baker DC, Benjamin TL. Evidence of a role for phosphatidylinositol 3-kinase activation in the blocking of apoptosis by polyomavirus middle t antigen. J Virol. 1998;72:3221-3226
8. Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP. Microrna targeting specificity in mammals: Determinants beyond seed pairing. Mol Cell. 2007;27:91-105
9. Orom UA, Lund AH. Experimental identification of microrna targets. Gene. 2010;451:1-5
10. Didiano D, Hobert O. Molecular architecture of a mirna-regulated 3' utr. RNA. 2008;14:1297-1317
11. Love KT, Mahon KP, Levins CG, Whitehead KA, Querbes W, Dorkin JR, Qin J, Cantley W, Qin LL, Racie T, Frank-Kamenetsky M, Yip KN, Alvarez R, Sah DW, de Fougerolles A, Fitzgerald K, Koteliansky V, Akinc A, Langer R, Anderson DG. Lipid-like materials for low-dose, in vivo gene silencing. Proc Natl Acad Sci U S A. 2010;107:1864-1869
12. Takeshita F, Minakuchi Y, Nagahara S, Honma K, Sasaki H, Hirai K, Teratani T, Namatame N, Yamamoto Y, Hanai K, Kato T, Sano A, Ochiya T. Efficient delivery of small interfering rna to bone-metastatic tumors by using atelocollagen in vivo. Proc Natl Acad Sci U S A. 2005;102:12177-12182
13. Morin A, Gallou-Kabani C, Mathieu JR, Cabon F. Systemic delivery and quantification of unformulated interfering rnas in vivo. Curr Top Med Chem. 2009;9:1117-1129
14. Li Y, Liang XY, Wei LN, Xiong YL, Yang X, Shi HG, Yang ZH. Study of rna interference inhibiting rat ovarian androgen biosynthesis by depressing 17alphahydroxylase/17, 20-lyase activity in vivo. Reprod Biol Endocrinol. 2009;7:73
15. Lee DS, Rumi MA, Konno T, Soares MJ. In vivo genetic manipulation of the rat trophoblast cell lineage using lentiviral vector delivery. Genesis. 2009;47:433-439
16. Singer O, Verma IM. Applications of lentiviral vectors for shrna delivery and transgenesis. Curr Gene Ther. 2008;8:483-488
17. Stern P, Astrof S, Erkeland SJ, Schustak J, Sharp PA, Hynes RO. A system for cre-regulated rna interference in vivo. Proc Natl Acad Sci U S A. 2008;105:13895-13900
18. Worm J, Stenvang J, Petri A, Frederiksen KS, Obad S, Elmen J, Hedtjarn M, Straarup EM, Hansen JB, Kauppinen S. Silencing of microrna-155 in mice during acute inflammatory response leads to derepression of c/ebp beta and downregulation of g-csf. Nucleic Acids Res. 2009;37:5784-5792
19. Elmen J, Lindow M, Schutz S, Lawrence M, Petri A, Obad S, Lindholm M, Hedtjarn M, Hansen HF, Berger U, Gullans S, Kearney P, Sarnow P, Straarup EM, Kauppinen S. Lna-mediated microrna silencing in non-human primates. Nature. 2008;452:896-899
20. Nabel EG. Cardiovascular disease. N Engl J Med. 2003;349:60-72
21. Ross R. The pathogenesis of atherosclerosis: A perspective for the 1990s. Nature. 1993;362:801-809
22. Caro CG. Discovery of the role of wall shear in atherosclerosis. Arterioscler Thromb Vasc Biol. 2009;29:158-161
23. Davies PF. Hemodynamic shear stress and the endothelium in cardiovascular pathophysiology. Nat Clin Pract Cardiovasc Med. 2009;6:16-26
24. Nam D, Ni CW, Rezvan A, Suo J, Budzyn K, Llanos A, Harrison D, Giddens D, Jo H. Partial carotid ligation is a model of acutely induced disturbed flow, leading to rapid endothelial dysfunction and atherosclerosis. Am J Physiol Heart Circ Physiol. 2009;297:H1535-1543

## APPENDIX A

mRNA expression profiles in response to disturb flow in vivo

Table A1. mRNA expression profiles in mouse ligated carotid endothelium (LCA) and controlateral right carotid endothelium (RCA) at 12 hr post-ligation

| Gene_ID | Gene | LCA1 | LCA2 | LCA3 | RCA1 | RCA2 | RCA3 | LCA/RCA |  | q-value\% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | signal | signal | signal | signal | signal | signal | ratio | SEM |  |
| ILMN_1235698 | Bmp4 | 817.172 | 753.4 | 861.735 | 525.787 | 490.672 | 560.74 | 1.54 | 0.01 | 0.00 |
| ILMN_2593496 | Got2 | 228.157 | 261.709 | 287.046 | 122.4 | 159.325 | 184.514 | 1.69 | 0.09 | 0.00 |
| ILMN_2909150 | Ctgf | 1789.72 | 1892.92 | 2115.17 | 308.975 | 514.682 | 378.377 | 5.02 | 0.67 | 0.00 |
| ILMN_2932964 | Ctps | 384.078 | 391.404 | 348.456 | 173.17 | 207.548 | 172.161 | 2.04 | 0.10 | 0.00 |
| ILMN_1239386 | Galnt12 | 347.417 | 330.933 | 257.781 | 155.923 | 125.391 | 88.3212 | 2.60 | 0.20 | 0.00 |
| ILMN_2451036 | LOC100047093 | 1679.33 | 1519.85 | 1469.16 | 1051.6 | 759.426 | 647.492 | 1.96 | 0.20 | 0.00 |
| ILMN_1244612 | Galnt12 | 1221.87 | 1278.77 | 1161.78 | 657.66 | 809.722 | 552.401 | 1.85 | 0.15 | 0.00 |
| ILMN_2694569 | LOC631037 | 474.404 | 495.195 | 339.706 | 339.191 | 325.196 | 176.209 | 1.62 | 0.16 | 9.02 |
| ILMN_1228475 | Ulk1 | 450.358 | 528.455 | 411.063 | 277.396 | 374.191 | 209.711 | 1.67 | 0.16 | 9.02 |
| ILMN_1236958 | Gabarapl1 | 1892.92 | 1951.06 | 1614.44 | 1209.61 | 1229.78 | 1100.19 | 1.54 | 0.04 | 9.02 |
| ILMN_2642403 | Lmo4 | 298.879 | 281.02 | 303.95 | 181.468 | 150.419 | 152.839 | 1.83 | 0.10 | 9.02 |
| ILMN_1231490 | 2410006H16Rik | 144.038 | 123.159 | 107.22 | 73.0421 | 55.7899 | 45.2832 | 2.18 | 0.11 | 9.37 |
| ILMN_2596560 | Phactr1 | 710.084 | 709.029 | 688.767 | 326.108 | 282.42 | 392.486 | 2.15 | 0.22 | 9.37 |
| ILMN_1213034 | 2010312A17Rik | 173.498 | 230.831 | 148.483 | 110.302 | 174.393 | 87.3967 | 1.53 | 0.11 | 9.37 |
| ILMN_2741621 | Birc2 | 120.616 | 100.17 | 108.414 | 71.0796 | 52.6087 | 61.0963 | 1.79 | 0.06 | 9.37 |
| ILMN_2790373 | Snn | 224.13 | 181.408 | 273.396 | 140.47 | 102.953 | 175.678 | 1.64 | 0.06 | 9.56 |
| ILMN_1258158 | Aldh6a1 | 225.876 | 231.851 | 168.556 | 143.021 | 129.896 | 86.1761 | 1.77 | 0.11 | 9.56 |
| ILMN_2888552 | Slc1a4 | 250.203 | 230.504 | 195.269 | 132.684 | 116.778 | 106.532 | 1.90 | 0.04 | 9.56 |
| ILMN_2977558 | Dapk2 | 167.93 | 180.36 | 215.294 | 45.5269 | 36.7138 | 43.489 | 4.52 | 0.41 | 9.56 |
| ILMN_2909336 | Gpm6a | 593.102 | 381.618 | 391.008 | 292.334 | 177.744 | 150.528 | 2.26 | 0.17 | 9.56 |
| ILMN_1238215 | Ctgf | 732.024 | 776.478 | 1051.6 | 120.253 | 143.62 | 147.488 | 6.21 | 0.50 | 9.56 |
| ILMN_2471996 | Al317223 | 108.143 | 120.993 | 118.385 | 47.364 | 45.7351 | 44.5681 | 2.53 | 0.12 | 9.56 |
| ILMN_1234487 | Angpt2 | 132.058 | 117.781 | 107.494 | 76.0581 | 53.367 | 52.736 | 1.99 | 0.14 | 9.56 |
| ILMN_1216764 | ler3 | 1302.13 | 1165 | 979.313 | 783.446 | 833.397 | 485.736 | 1.69 | 0.18 | 9.56 |
| ILMN_1252481 | Fosl2 | 574.427 | 804.603 | 664.416 | 333.518 | 431.408 | 369.402 | 1.80 | 0.04 | 9.56 |
| ILMN_1215136 | Scn3b | 132.921 | 89.9995 | 114.408 | 87.8651 | 40.9282 | 70.6479 | 1.78 | 0.21 | 9.56 |
| ILMN_1223313 | Fn3k | 159.775 | 128.891 | 117.762 | 113.407 | 74.5454 | 64.4237 | 1.66 | 0.13 | 9.56 |
| ILMN_2711966 | Mrpl1 | 116.087 | 130.869 | 159.467 | 60.179 | 69.4427 | 89.0209 | 1.87 | 0.04 | 9.56 |
| ILMN_1230596 | E030033D05Rik | 693.063 | 576.728 | 582.878 | 403.333 | 322.458 | 404.28 | 1.65 | 0.11 | 10.00 |
| ILMN_1232928 | Timp3 | 551.733 | 494.594 | 560.043 | 887.528 | 857.985 | 901.938 | 0.61 | 0.01 | 0.00 |
| ILMN_2604029 | KIf2 | 115.137 | 72.2157 | 81.7463 | 332.636 | 262.923 | 286.216 | 0.30 | 0.02 | 0.00 |
| ILMN_2686883 | Gnaq | 211.461 | 223.549 | 217.127 | 328.862 | 336.292 | 323.963 | 0.66 | 0.01 | 0.00 |
| ILMN_2697304 | Eln | 591.147 | 1039.74 | 1188.16 | 1347.98 | 1656.34 | 1809.24 | 0.57 | 0.07 | 0.00 |
| ILMN_1235077 | Capn2 | 119.518 | 141.371 | 167.639 | 239.745 | 255.197 | 275.515 | 0.55 | 0.03 | 0.00 |
| ILMN_2595664 | Dhh | 451.157 | 431.692 | 574.427 | 954.708 | 928.442 | 976.693 | 0.51 | 0.04 | 0.00 |
| ILMN_2672190 | Id1 | 222.28 | 186.727 | 161.345 | 347.956 | 311.966 | 303.761 | 0.59 | 0.03 | 0.00 |
| ILMN_2880906 | Pdlim2 | 213.178 | 176.138 | 142.426 | 359.282 | 355.997 | 319.709 | 0.51 | 0.04 | 2.54 |
| ILMN_2750053 | Ptprj | 542.797 | 505.843 | 544.872 | 974.098 | 1042.64 | 956.522 | 0.54 | 0.03 | 2.54 |
| ILMN_2424721 | Pdgfa | 240.649 | 195.966 | 227.271 | 406.149 | 371.926 | 437.338 | 0.55 | 0.02 | 4.78 |
| ILMN_2634083 | Cdkn1a | 155.98 | 186.659 | 260.502 | 298.461 | 351.312 | 447.08 | 0.55 | 0.02 | 7.17 |
| ILMN_2618408 | Icam2 | 383.167 | 332.636 | 393.431 | 671.942 | 634.329 | 780.865 | 0.53 | 0.02 | 7.17 |
| ILMN_2745876 | BC020535 | 380.535 | 331.058 | 331.058 | 566.348 | 575.882 | 585.862 | 0.60 | 0.03 | 7.17 |
| ILMN_1220170 | Tek | 472.59 | 480.064 | 498.934 | 693.063 | 798.297 | 773.345 | 0.64 | 0.02 | 7.17 |
| ILMN_2498731 | E030024M20Rik | 176.277 | 217.963 | 169.109 | 399.759 | 379.243 | 386.73 | 0.48 | 0.05 | 7.17 |
| ILMN_2950503 | Dab2ip | 156.906 | 174.016 | 152.106 | 249.206 | 256.373 | 226.339 | 0.66 | 0.02 | 7.17 |
| ILMN_2999439 | KIf4 | 171.955 | 165.37 | 119.236 | 345.631 | 349.432 | 250.068 | 0.48 | 0.01 | 7.17 |
| ILMN_2675760 | 2310046K01Rik | 196.939 | 182.573 | 118.636 | 341.139 | 380.047 | 322.807 | 0.48 | 0.06 | 7.17 |
| ILMN_2976129 | Tinagl | 398.491 | 427.274 | 629.718 | 740.839 | 757.994 | 858.775 | 0.61 | 0.06 | 7.17 |
| ILMN_2773211 | Kras | 54.4353 | 68.3277 | 62.5253 | 102.517 | 120.555 | 117.508 | 0.54 | 0.01 | 7.17 |
| ILMN_2608133 | Rhpn2 | 281.73 | 437.953 | 347.3 | 728.041 | 736.412 | 677.373 | 0.50 | 0.06 | 7.17 |
| ILMN_1216781 | Rab11fip5 | 227.547 | 241.386 | 221.022 | 430.174 | 422.569 | 358.315 | 0.57 | 0.03 | 7.17 |
| ILMN_2587084 | C230009C22Rik | 80.5051 | 101.966 | 105.303 | 137.694 | 172.615 | 168.081 | 0.60 | 0.01 | 7.17 |
| ILMN_2866267 | F2rl1 | 164.217 | 151.751 | 175.17 | 271.486 | 277.509 | 328.971 | 0.56 | 0.02 | 7.17 |
| ILMN_2789562 | P4ha2 | 324.92 | 314.45 | 235.263 | 445.015 | 447.244 | 406.84 | 0.67 | 0.05 | 7.17 |
| ILMN_1247916 | Lims2 | 139.682 | 106.904 | 73.1437 | 252.02 | 187.496 | 171.197 | 0.52 | 0.05 | 7.17 |
| ILMN_1231445 | Inmt | 41.3145 | 36.7486 | 52.4461 | 106.073 | 122.761 | 135.324 | 0.36 | 0.03 | 7.17 |
| ILMN_2683586 | Capn2 | 197.623 | 233.652 | 272.105 | 354.01 | 364.537 | 376.849 | 0.64 | 0.05 | 7.45 |
| ILMN_2710274 | Slc9a3r2 | 652.56 | 539.922 | 456.409 | 1092.35 | 1089.95 | 1185.03 | 0.49 | 0.06 | 7.45 |
| ILMN_1229745 | Sertad4 | 220.611 | 385.796 | 269.127 | 423.909 | 534.873 | 406.474 | 0.63 | 0.06 | 7.45 |
| ILMN_3140516 | Rapgef1 | 128.303 | 168.44 | 136.418 | 209.651 | 285.033 | 249.165 | 0.58 | 0.02 | 7.45 |
| ILMN_2641228 | Hspa12b | 269.897 | 282.867 | 229.154 | 584.68 | 503.675 | 595.72 | 0.47 | 0.05 | 7.45 |
| ILMN_2738345 | Lims2 | 172.243 | 149.716 | 140.761 | 236.444 | 237.036 | 234.543 | 0.65 | 0.04 | 9.70 |
| ILMN_2699637 | Lsr | 96.655 | 116.2 | 184.641 | 238.637 | 214.482 | 283.553 | 0.53 | 0.07 | 9.70 |
| ILMN_1243407 | KIk10 | 367.059 | 413.861 | 459.284 | 1033.42 | 1624.18 | 1376.8 | 0.31 | 0.03 | 9.70 |
| ILMN_2689207 | Col6a3 | 42.4081 | 40.3794 | 52.2117 | 85.3355 | 86.7083 | 105.74 | 0.49 | 0.01 | 9.70 |
| ILMN_2774056 | Cmklr1 | 54.6829 | 52.8889 | 45.0754 | 87.0237 | 87.8331 | 80.0749 | 0.60 | 0.02 | 9.70 |
| ILMN_1212703 | Kras | 201.053 | 156.063 | 193.432 | 349.833 | 316.052 | 429.296 | 0.51 | 0.04 | 9.70 |

Table A2. mRNA expression profiles in mouse ligated carotid endothelium (LCA) and controlateral
right carotid endothelium (RCA) at 48 hr post-ligation

| Gene_ID | Gene | LCA1 | LCA2 | LCA3 | RCA1 | RCA2 | RCA3 | LCA/RCA |  | q-value\% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | signal | signal | signal | signal | signal | signal | ratio | SEM |  |
| ILMN_2743013 | Ncf4 | 123.319 | 153.945 | 130.835 | 30.4068 | 62.8657 | 37.0913 | 3.34 | 0.47 | 0.00 |
| ILMN_2939681 | Lyzs | 187.153 | 212.471 | 201.707 | 48.2658 | 81.8811 | 65.3634 | 3.19 | 0.37 | 0.00 |
| ILMN_2878071 | Lyz | 429.584 | 479.76 | 438.107 | 126.971 | 197.15 | 116.669 | 3.19 | 0.39 | 0.00 |
| ILMN_2867147 | Tyrobp | 596.259 | 655.812 | 588.908 | 118.44 | 229.035 | 163.324 | 3.83 | 0.64 | 0.00 |
| ILMN_2935386 | 6330548G22Rik | 212.163 | 282.065 | 276.212 | 92.8085 | 176.527 | 162.691 | 1.86 | 0.21 | 3.14 |
| ILMN_1245129 | Ifitm1 | 71.9507 | 87.6932 | 87.4224 | 26.9705 | 46.1087 | 43.6963 | 2.19 | 0.24 | 3.14 |
| ILMN_2767918 | Ifi30 | 63.2231 | 78.1292 | 88.1417 | 35.5067 | 49.5621 | 59.3177 | 1.61 | 0.09 | 3.14 |
| ILMN_3120652 | Smap2 | 624.053 | 648.638 | 606.324 | 388.744 | 414.294 | 402.025 | 1.56 | 0.03 | 3.14 |
| ILMN_2511249 | scl0002785.1_49 | 121.224 | 120.312 | 141.507 | 68.7494 | 71.6649 | 93.8944 | 1.65 | 0.08 | 3.14 |
| ILMN_1223257 | Ccl4 | 72.8491 | 70.5143 | 75.7351 | 30.5678 | 29.4904 | 30.6628 | 2.41 | 0.03 | 3.14 |
| ILMN_2718801 | Fosl2 | 69.6099 | 80.6075 | 73.0887 | 40.0656 | 49.4381 | 41.3171 | 1.71 | 0.04 | 3.40 |
| ILMN_3009860 | Sell | 87.2527 | 91.0993 | 92.5678 | 30.1647 | 35.8777 | 30.1431 | 2.83 | 0.16 | 3.40 |
| ILMN_2712986 | Chi3l3 | 207.973 | 251.51 | 222.01 | 31.4937 | 42.6378 | 33.2733 | 6.39 | 0.25 | 3.40 |
| ILMN_3127739 | Sf3b4 | 216.219 | 162.509 | 202.788 | 125.774 | 86.2596 | 121.33 | 1.76 | 0.06 | 7.51 |
| ILMN_2737713 | Edn1 | 822.014 | 651.046 | 605.525 | 349.556 | 261.932 | 134.351 | 3.11 | 0.70 | 7.51 |
| ILMN_1252076 | Lyz2 | 211.03 | 262.556 | 252.771 | 30.1063 | 44.3544 | 34.4201 | 6.76 | 0.43 | 7.51 |
| ILMN_2470131 | 6720475J19Rik | 66.5284 | 72.9085 | 74.02 | 32.1014 | 33.5133 | 35.5536 | 2.11 | 0.03 | 7.51 |
| ILMN_2888834 | Apob48r | 157.947 | 141.914 | 178.439 | 30.6259 | 29.1935 | 39.4368 | 4.85 | 0.18 | 7.51 |
| ILMN_2920849 | Pira4 | 78.3787 | 85.1096 | 78.5584 | 35.4018 | 34.4845 | 31.7957 | 2.38 | 0.09 | 7.51 |
| ILMN_1240256 | Slc9a3r1 | 287.558 | 265.65 | 261.411 | 148.796 | 127.151 | 147.717 | 1.93 | 0.09 | 7.51 |
| ILMN_1251066 | BC067047 | 100.997 | 84.065 | 83.4896 | 58.3733 | 38.659 | 45.1855 | 1.92 | 0.13 | 7.51 |
| ILMN_3117876 | Chi3l3 | 226.687 | 287.435 | 252.441 | 42.0187 | 53.0328 | 37.5862 | 5.84 | 0.44 | 7.51 |
| ILMN_2714796 | Coro1a | 324.182 | 389.274 | 409.327 | 41.4145 | 77.2405 | 49.7029 | 7.03 | 1.00 | 7.51 |
| ILMN_1249242 | Dnajc2 | 324.869 | 289.343 | 304.17 | 214.517 | 187.064 | 176.265 | 1.60 | 0.07 | 7.51 |
| ILMN_1221354 | 9330156H06Rik | 53.8499 | 51.2482 | 49.4678 | 34.5135 | 33.36 | 30.5358 | 1.57 | 0.02 | 8.59 |
| ILMN_1225192 | Nfkbid | 100.098 | 103.557 | 88.8847 | 30.247 | 33.5903 | 31.3071 | 3.08 | 0.14 | 8.59 |
| ILMN_2699531 | Rgs10 | 218.763 | 212.256 | 200.079 | 152.404 | 144.844 | 119.11 | 1.53 | 0.08 | 8.59 |
| ILMN_1217928 | C230067O06Rik | 151.306 | 202.394 | 168.605 | 81.602 | 115.268 | 93.6139 | 1.80 | 0.03 | 8.59 |
| ILMN_1217849 | Laptm5 | 864.305 | 1021.15 | 1041.96 | 158.069 | 302.342 | 147.426 | 5.30 | 1.07 | 8.59 |
| ILMN_3013874 | EG434858 | 94.9012 | 96.9803 | 118.144 | 55.2752 | 50.6449 | 69.941 | 1.77 | 0.07 | 8.59 |
| ILMN_2731760 | Myo1f | 94.678 | 99.1485 | 109.74 | 33.263 | 40.0031 | 36.5386 | 2.78 | 0.16 | 8.59 |
| ILMN_3089584 | Cd74 | 467.7 | 422.95 | 350.281 | 123.912 | 165.07 | 47.2612 | 4.58 | 1.46 | 8.59 |
| ILMN_1221817 | Cd74 | 357.567 | 326.853 | 274.567 | 109.381 | 139.16 | 40.3052 | 4.14 | 1.36 | 8.59 |
| ILMN_2652511 | Hist1h2bj | 261.488 | 457.748 | 306.074 | 155.764 | 324.703 | 168.345 | 1.64 | 0.12 | 8.59 |
| ILMN_2571683 | 9830169E20Rik | 278.327 | 367.707 | 303.171 | 122.441 | 173.871 | 152.507 | 2.13 | 0.08 | 8.59 |
| ILMN_1259561 | Prep | 80.1438 | 95.7846 | 87.9637 | 44.4471 | 51.3282 | 47.8638 | 1.84 | 0.02 | 8.59 |
| ILMN_2659151 | Thbs1 | 499.943 | 608.123 | 543.083 | 178.973 | 189.039 | 121.282 | 3.50 | 0.51 | 8.59 |
| ILMN_1248139 | Gp49a | 141.482 | 190.374 | 162.124 | 31.4862 | 43.9857 | 33.6517 | 4.55 | 0.14 | 8.59 |
| ILMN_1254513 | 4930553M18Rik | 283.914 | 396.799 | 323.464 | 124.799 | 188.748 | 155.469 | 2.15 | 0.06 | 8.59 |
| ILMN_2637165 | 2310001H17Rik | 168.303 | 159.675 | 137.582 | 106.278 | 78.8015 | 62.7342 | 1.93 | 0.18 | 8.59 |
| ILMN_2965903 | Hdc | 914.47 | 811.755 | 1004.96 | 43.2749 | 115.778 | 54.5811 | 15.52 | 4.33 | 8.59 |
| ILMN_1245109 | 3830430K15Rik | 70.8322 | 80.3457 | 64.5523 | 29.8251 | 47.0862 | 29.5065 | 2.09 | 0.20 | 8.59 |
| ILMN_2699923 | Asprv1 | 64.1191 | 67.7721 | 64.8877 | 32.6039 | 41.3551 | 33.0468 | 1.86 | 0.11 | 8.59 |
| ILMN_3160218 | Amica1 | 315.159 | 265.168 | 248.355 | 31.1891 | 42.8909 | 31.6534 | 8.04 | 1.14 | 8.59 |
| ILMN_2712668 | Pfkfb4 | 145.68 | 181.907 | 188.39 | 33.3639 | 56.7406 | 37.4467 | 4.20 | 0.53 | 8.59 |
| ILMN_2777491 | Fhod1 | 193.803 | 259.093 | 304.499 | 78.9357 | 158.901 | 168.632 | 1.96 | 0.25 | 8.59 |
| ILMN_2565252 | B130015M16Rik | 164.343 | 211.942 | 177.849 | 99.37 | 125.727 | 95.0685 | 1.74 | 0.07 | 8.59 |
| ILMN_1244977 | H2-DMb1 | 114.585 | 84.6889 | 85.6722 | 74.4329 | 42.7625 | 52.7834 | 1.71 | 0.14 | 8.59 |
| ILMN_2646630 | Lrrc33 | 129.658 | 118.721 | 142.842 | 39.0084 | 35.3955 | 31.1459 | 3.75 | 0.42 | 8.59 |
| ILMN_2996904 | Obfc2a | 65.4459 | 62.6891 | 76.221 | 36.5757 | 36.6565 | 43.5082 | 1.75 | 0.02 | 8.59 |
| ILMN_2603689 | Fmnl1 | 72.0529 | 84.8952 | 81.4144 | 31.1145 | 33.0254 | 27.6943 | 2.61 | 0.18 | 8.67 |
| ILMN_2686244 | Rassf4 | 95.5648 | 119.131 | 107.044 | 32.9869 | 33.8311 | 32.7233 | 3.23 | 0.18 | 8.67 |
| ILMN_2609323 | Lst1 | 116.537 | 118.7 | 98.3757 | 52.9958 | 34.3275 | 30.5178 | 2.96 | 0.39 | 8.67 |
| ILMN_1226525 | H2-Ab1 | 511.746 | 477.066 | 513.215 | 181.965 | 144.138 | 64.5439 | 4.69 | 1.64 | 9.45 |
| ILMN_3102376 | Fcgr2b | 54.4655 | 58.6859 | 57.6539 | 30.2046 | 38.2377 | 31.9347 | 1.71 | 0.09 | 9.45 |
| ILMN_1258723 | Bop1 | 90.0959 | 76.221 | 82.9635 | 48.7119 | 40.8353 | 51.7244 | 1.77 | 0.08 | 9.45 |
| ILMN_2766780 | Lyzs | 53.1439 | 56.7818 | 58.3109 | 31.9626 | 39.1244 | 36.9594 | 1.56 | 0.06 | 9.45 |
| ILMN_2644587 | Bzw2 | 79.8605 | 96.644 | 130.336 | 48.2566 | 55.0492 | 95.6831 | 1.59 | 0.12 | 9.45 |
| ILMN_2669404 | Lmnb2 | 464.079 | 819.59 | 639.564 | 229.616 | 514.085 | 295.852 | 1.93 | 0.17 | 9.45 |
| ILMN_2416628 | Pscd4 | 298.021 | 248.589 | 359.701 | 105.753 | 79.7443 | 117.302 | 3.00 | 0.09 | 9.45 |
| ILMN_2712151 | 1810033B17Rik | 63.4892 | 54.3306 | 58.1757 | 37.5892 | 34.0434 | 35.1195 | 1.65 | 0.03 | 9.45 |
| ILMN_1247377 | Mpeg1 | 94.1206 | 86.877 | 107.877 | 35.9544 | 39.3979 | 41.2287 | 2.48 | 0.14 | 9.45 |
| ILMN_2692960 | Ero1lb | 91.8589 | 89.118 | 99.0977 | 46.7554 | 54.0509 | 51.1508 | 1.85 | 0.10 | 9.45 |
| ILMN_1241302 | Csf3r | 66.924 | 67.8597 | 60.6093 | 29.2848 | 34.0753 | 32.6814 | 2.04 | 0.13 | 9.45 |
| ILMN_2606144 | Cd300lf | 203.567 | 303.984 | 266.307 | 28.857 | 46.6458 | 32.5913 | 7.25 | 0.49 | 9.45 |
| ILMN_2685023 | Hmha1 | 81.0002 | 87.1227 | 92.5342 | 30.4157 | 38.2413 | 26.7233 | 2.80 | 0.35 | 9.45 |
| ILMN_1229530 | Csk | 337.99 | 252.528 | 271.937 | 253.677 | 161.416 | 153.79 | 1.56 | 0.13 | 9.45 |
| ILMN_2820260 | Wdr77 | 99.2368 | 98.7058 | 137.238 | 48.9736 | 45.0733 | 68.385 | 2.07 | 0.06 | 9.45 |

Table A2. -Continued

| Gene_ID | Gene | LCA1 | LCA2 | LCA3 | RCA1 | RCA2 | RCA3 | LCA/RCA |  | q-value\% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | signal | signal | signal | signal | signal | signal | ratio | SEM |  |
| ILMN_2607880 | Tkt | 231.327 | 253.954 | 270.961 | 132.288 | 134.951 | 189.084 | 1.69 | 0.13 | 9.45 |
| ILMN_2956092 | Rassf4 | 97.4455 | 129.891 | 111.895 | 32.3396 | 35.7787 | 32.92 | 3.35 | 0.18 | 9.45 |
| ILMN_2909150 | Ctgf | 2112.78 | 2237.06 | 2417.67 | 607.917 | 342.627 | 143.338 | 8.96 | 4.05 | 9.45 |
| ILMN_2687586 | Cxcl16 | 489.811 | 523.719 | 544.239 | 192.637 | 302.815 | 213.647 | 2.27 | 0.27 | 9.45 |
| ILMN_2924831 | Gas7 | 105.126 | 136.965 | 94.9113 | 37.2214 | 87.2888 | 42.8033 | 2.20 | 0.36 | 9.45 |
| ILMN_1238215 | Ctgf | 788.6 | 844.157 | 975.014 | 177.849 | 107.824 | 57.0806 | 9.78 | 3.78 | 9.45 |
| ILMN_2685393 | Ccr5 | 85.57 | 95.7537 | 111.699 | 27.3557 | 29.427 | 28.7345 | 3.42 | 0.23 | 9.45 |
| ILMN_2607675 | LOC641240 | 386.96 | 384.085 | 387.646 | 167.878 | 123.286 | 61.3794 | 3.91 | 1.22 | 9.45 |
| ILMN_2619861 | Nipsnap1 | 104.972 | 183.746 | 134.089 | 64.3865 | 126.451 | 86.1648 | 1.55 | 0.05 | 9.45 |
| ILMN_2673776 | E2f2 | 126.665 | 157.947 | 160.624 | 60.1764 | 99.7358 | 77.5122 | 1.92 | 0.17 | 9.45 |
| ILMN_2910934 | Cd52 | 206.319 | 271.354 | 326.853 | 34.496 | 57.7126 | 69.3713 | 5.13 | 0.42 | 9.45 |
| ILMN_2694857 | Gpatch3 | 79.3019 | 54.5587 | 78.5897 | 53.227 | 29.8892 | 58.6097 | 1.55 | 0.14 | 9.45 |
| ILMN_1256883 | Rad51 | 70.8423 | 101.832 | 70.4245 | 28.8867 | 50.97 | 34.1362 | 2.17 | 0.14 | 9.45 |
| ILMN_2559943 | A230055O06Rik | 148.961 | 146.605 | 155.192 | 101.43 | 93.0909 | 87.6985 | 1.60 | 0.09 | 9.45 |
| ILMN_2629971 | Fzr1 | 52.8148 | 61.3323 | 64.5439 | 35.3009 | 38.5166 | 44.1843 | 1.52 | 0.04 | 9.45 |
| ILMN_1213364 | LOC638892 | 228.097 | 290.785 | 316.083 | 138.476 | 155.98 | 202.311 | 1.69 | 0.09 | 9.45 |
| ILMN_1223317 | Lgals3 | 70.0863 | 64.7204 | 75.4575 | 32.4776 | 33.2499 | 31.0613 | 2.18 | 0.14 | 9.45 |
| ILMN_2748875 | Fcer1g | 100.123 | 163.572 | 119.655 | 31.5826 | 61.3874 | 33.5504 | 3.13 | 0.26 | 9.45 |
| ILMN_1235392 | LOC668183 | 115.284 | 121.459 | 135.66 | 47.1985 | 54.1764 | 41.9853 | 2.64 | 0.30 | 9.45 |
| ILMN_1239569 | Lsg1 | 103.294 | 116.788 | 132.113 | 49.7742 | 74.3494 | 94.3037 | 1.68 | 0.20 | 9.45 |
| ILMN_1230157 | Rnd3 | 221.61 | 170.703 | 242.565 | 89.7682 | 83.3089 | 121.401 | 2.17 | 0.15 | 9.45 |
| ILMN_2787257 | Coro1a | 272.453 | 320.607 | 392.791 | 43.5109 | 65.6973 | 51.2859 | 6.27 | 0.80 | 9.45 |
| ILMN_2781030 | Napsa | 134.677 | 111.621 | 133.666 | 34.3081 | 45.1231 | 45.4002 | 3.11 | 0.43 | 9.45 |
| ILMN_1230440 | 1700041B20Rik | 96.4732 | 128.642 | 139.576 | 45.1958 | 59.9518 | 63.2417 | 2.16 | 0.02 | 9.45 |
| ILMN_1252804 | Map4k1 | 71.8466 | 60.3193 | 66.8166 | 49.0154 | 29.6923 | 42.226 | 1.69 | 0.17 | 9.45 |
| ILMN_1236387 | BC024537 | 469.549 | 434.196 | 339.932 | 305.973 | 212.732 | 190.717 | 1.79 | 0.15 | 9.45 |
| ILMN_2887986 | Cd300a | 237.52 | 423.177 | 337.449 | 47.2138 | 128.411 | 65.4145 | 4.49 | 0.60 | 9.45 |
| ILMN_1227434 | Itgb7 | 83.795 | 78.8353 | 79.6518 | 50.4758 | 34.0096 | 31.6193 | 2.17 | 0.26 | 9.45 |
| ILMN_2749063 | Dock10 | 121.947 | 113.393 | 83.2968 | 60.1824 | 36.46 | 31.4292 | 2.60 | 0.31 | 9.45 |
| ILMN_2460168 | Wdr1 | 164.099 | 240.009 | 239.87 | 94.2181 | 182.106 | 153.171 | 1.54 | 0.12 | 9.45 |
| ILMN_1244123 | Slc38a2 | 617.278 | 625.837 | 600.028 | 411.409 | 327.222 | 277.441 | 1.86 | 0.19 | 9.45 |
| ILMN_1219712 | Ctps | 186.691 | 153.171 | 195.687 | 105.577 | 78.5897 | 85.897 | 2.00 | 0.15 | 9.45 |
| ILMN_1222471 | Gmfg | 111.062 | 108.082 | 127.702 | 52.6678 | 53.123 | 48.4808 | 2.26 | 0.19 | 9.45 |
| ILMN_2816180 | Lbh | 293.83 | 322.267 | 337.268 | 135.811 | 183.486 | 126.057 | 2.20 | 0.27 | 9.45 |
| ILMN_2769285 | Sema6b | 273.399 | 417.44 | 342.393 | 122.095 | 182.171 | 116.952 | 2.49 | 0.22 | 9.45 |
| ILMN_2642403 | Lmo4 | 292.83 | 226.864 | 246.03 | 161.313 | 138.716 | 149.292 | 1.70 | 0.06 | 9.45 |
| ILMN_2657409 | Rps18 | 121.768 | 81.1019 | 131.02 | 66.7005 | 43.6392 | 77.7686 | 1.79 | 0.05 | 9.45 |
| ILMN_3113420 | Ptpn6 | 116.265 | 94.4267 | 115.182 | 39.6456 | 40.0271 | 32.1489 | 2.96 | 0.35 | 9.45 |
| ILMN_2665666 | Pstpip1 | 64.4405 | 80.309 | 74.7295 | 29.2007 | 30.2943 | 37.1943 | 2.29 | 0.19 | 9.45 |
| ILMN_2747456 | Ivns1abp | 590.533 | 756.968 | 781.699 | 182.197 | 184.423 | 122.369 | 4.58 | 0.94 | 9.45 |
| ILMN_2690603 | Spp1 | 65.9903 | 53.5652 | 58.918 | 28.6354 | 27.6908 | 27.5881 | 2.12 | 0.11 | 9.45 |
| ILMN_1218123 | Aif1 | 148.664 | 155.192 | 172.53 | 43.6865 | 71.7701 | 41.9966 | 3.22 | 0.57 | 9.45 |
| ILMN_2633062 | 9130422G05Rik | 70.3247 | 73.2567 | 65.3731 | 49.2978 | 43.418 | 38.5776 | 1.60 | 0.09 | 9.45 |
| ILMN_2787785 | Akna | 65.5509 | 84.5019 | 85.8354 | 35.0572 | 55.3759 | 45.1822 | 1.77 | 0.12 | 9.45 |
| ILMN_1224876 | Znhit1 | 136.738 | 147.426 | 134.253 | 69.9344 | 101.869 | 65.8559 | 1.81 | 0.18 | 9.45 |
| ILMN_2685392 | Ccr5 | 84.029 | 83.7625 | 103.879 | 34.0272 | 29.3048 | 30.2587 | 2.92 | 0.28 | 9.45 |
| ILMN_1255766 | Sh3bp2 | 278.066 | 241.807 | 383.771 | 151.535 | 113.675 | 198.318 | 1.97 | 0.09 | 9.45 |
| ILMN_2524817 | Dnahc17 | 73.2993 | 94.2797 | 102.733 | 41.2589 | 52.5195 | 54.4876 | 1.82 | 0.03 | 9.45 |
| ILMN_1228657 | Fcgr2b | 57.0806 | 57.6871 | 58.8866 | 30.3894 | 37.3815 | 30.0423 | 1.79 | 0.13 | 9.45 |
| ILMN_2628629 | Cdh1 | 68.05 | 69.4677 | 66.7291 | 41.0275 | 41.4125 | 46.8406 | 1.59 | 0.08 | 9.45 |
| ILMN_2671984 | Ptprc | 97.5611 | 89.882 | 107.976 | 44.1995 | 36.937 | 31.766 | 2.68 | 0.37 | 9.45 |
| ILMN_2619961 | 4933429F08Rik | 61.1867 | 61.4304 | 54.6537 | 34.5111 | 41.7481 | 34.1263 | 1.62 | 0.09 | 9.45 |
| ILMN_2663930 | Slfn1 | 160.255 | 155.284 | 214.321 | 32.0282 | 34.0124 | 30.4836 | 5.53 | 0.76 | 9.45 |
| ILMN_2675223 | Cd33 | 92.3515 | 112.121 | 130.542 | 29.4763 | 40.0378 | 33.5334 | 3.28 | 0.32 | 9.45 |
| ILMN_1230287 | 4732429D16Rik | 117.416 | 159.803 | 120.705 | 39.1662 | 42.5963 | 39.0152 | 3.28 | 0.24 | 9.45 |
| ILMN_2639925 | Narg1 | 85.7018 | 88.9274 | 95.44 | 61.2866 | 58.5311 | 58.9547 | 1.51 | 0.06 | 9.45 |
| ILMN_2705628 | Clec4d | 130.394 | 101.072 | 151.713 | 32.5298 | 33.4012 | 42.0911 | 3.55 | 0.29 | 9.45 |
| ILMN_1226517 | TtII4 | 115.468 | 115.212 | 144.219 | 62.1325 | 74.5314 | 79.9557 | 1.74 | 0.10 | 9.45 |
| ILMN_2757428 | Bloc1s2 | 127.436 | 146.689 | 153.895 | 74.0141 | 108.02 | 92.7563 | 1.58 | 0.11 | 9.45 |
| ILMN_3158135 | Sema6b | 137.319 | 196.419 | 162.365 | 77.6723 | 100.185 | 73.5688 | 1.98 | 0.13 | 9.45 |
| ILMN_1228320 | Cfp | 88.6197 | 156.385 | 120.428 | 35.1701 | 69.8271 | 43.9795 | 2.50 | 0.14 | 9.45 |
| ILMN_2737302 | Cxcl12 | 272.912 | 328.145 | 351.831 | 103.238 | 99.8966 | 67.5787 | 3.71 | 0.77 | 9.45 |
| ILMN_1247626 | As3mt | 52.1732 | 45.421 | 47.4531 | 33.0136 | 30.0851 | 33.0534 | 1.51 | 0.04 | 9.45 |
| ILMN_1252335 | Agpat6 | 1062.84 | 973.937 | 1072.38 | 612.669 | 610.072 | 806.167 | 1.55 | 0.12 | 9.45 |
| ILMN_3008858 | Ctsc | 84.114 | 98.5505 | 129.243 | 28.2129 | 35.5427 | 42.4797 | 2.93 | 0.08 | 9.45 |
| ILMN_2655024 | II17ra | 224.335 | 282.901 | 245.501 | 91.3833 | 59.972 | 47.6047 | 4.11 | 0.84 | 9.45 |
| ILMN_1236290 | Ets1 | 80.5701 | 117.178 | 108.323 | 37.5733 | 48.1691 | 46.8349 | 2.30 | 0.08 | 9.45 |
| ILMN_2891646 | Hist1h2bm | 220.447 | 420.2 | 283.212 | 137.976 | 291.864 | 148.961 | 1.65 | 0.14 | 9.45 |
| ILMN_2689785 | Cd68 | 78.7163 | 86.6409 | 84.1276 | 44.8606 | 42.4945 | 30.8189 | 2.17 | 0.29 | 9.45 |

Table A2. -Continued

| Gene_ID | Gene | LCA1 | LCA2 | LCA3 | RCA1 | RCA2 | RCA3 | LCA/RCA |  | q-value\% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | signal | signal | signal | signal | signal | signal | ratio | SEM |  |
| ILMN_2631161 | Fcgr4 | 171.804 | 267.6 | 234.549 | 32.5079 | 33.593 | 25.6287 | 7.47 | 1.14 | 9.45 |
| ILMN_2544890 | Pde4b | 111.57 | 95.7741 | 107.701 | 67.3081 | 56.1154 | 47.1862 | 1.88 | 0.20 | 9.45 |
| ILMN_2767057 | 3110082I17Rik | 202.788 | 205.627 | 226.076 | 95.0387 | 128.583 | 157.37 | 1.72 | 0.21 | 9.45 |
| ILMN_1224353 | Rcc2 | 251.425 | 226.076 | 164.073 | 169.787 | 113.35 | 92.9437 | 1.75 | 0.15 | 9.45 |
| ILMN_1239102 | H2-Eb1 | 226.402 | 180.13 | 196.204 | 94.0991 | 85.3377 | 37.1224 | 3.27 | 1.01 | 9.45 |
| ILMN_3073899 | Pira11 | 75.7727 | 69.0438 | 64.2367 | 39.2087 | 37.5585 | 40.449 | 1.79 | 0.10 | 9.45 |
| ILMN_2747060 | Coro1a | 84.3514 | 110.019 | 114.992 | 33.7275 | 41.0687 | 31.6302 | 2.94 | 0.35 | 9.45 |
| ILMN_2913716 | H2-Ab1 | 386.625 | 341.736 | 380.835 | 184.893 | 124.201 | 60.6329 | 3.71 | 1.30 | 9.45 |
| ILMN_2653132 | Clec7a | 60.2752 | 70.4402 | 71.6424 | 34.7265 | 31.5234 | 33.6207 | 2.03 | 0.15 | 9.45 |
| ILMN_2842338 | Tbc1d10c | 75.4891 | 97.3202 | 94.4267 | 41.8572 | 48.4452 | 40.463 | 2.05 | 0.15 | 9.45 |
| ILMN_2887983 | Cd300a | 245.024 | 447.291 | 350.996 | 49.8912 | 107.791 | 59.5509 | 4.98 | 0.50 | 9.45 |
| ILMN_1240566 | Cep170 | 128.61 | 107.81 | 115.212 | 53.65 | 56.509 | 65.9948 | 2.02 | 0.20 | 9.45 |
| ILMN_1221736 | Samhd1 | 188.324 | 222.395 | 201.868 | 110.729 | 106.165 | 69.5941 | 2.23 | 0.35 | 9.45 |
| ILMN_2634248 | Syncrip | 213.302 | 188.295 | 187.853 | 155.698 | 100.997 | 91.2002 | 1.76 | 0.21 | 9.45 |
| ILMN_2957167 | 4931417G12Rik | 52.8908 | 77.2405 | 73.7782 | 30.2857 | 51.7699 | 40.0315 | 1.69 | 0.10 | 9.45 |
| ILMN_2963974 | Gemin4 | 79.7541 | 95.2519 | 87.846 | 54.2831 | 55.062 | 51.4061 | 1.64 | 0.08 | 9.45 |
| ILMN_2742152 | Gadd45a | 135.198 | 174.665 | 208.666 | 34.586 | 33.3604 | 35.3309 | 5.02 | 0.59 | 9.45 |
| ILMN_1219333 | 9830134K01Rik | 64.5167 | 58.1718 | 78.6184 | 33.8243 | 37.9753 | 53.7238 | 1.63 | 0.14 | 9.45 |
| ILMN_3157568 | Bcl2l11 | 131.316 | 122.924 | 136.543 | 88.1417 | 59.0194 | 64.8877 | 1.89 | 0.20 | 9.45 |
| ILMN_2601155 | Frzb | 144.679 | 148.101 | 125.241 | 60.5082 | 70.7536 | 74.7254 | 2.05 | 0.21 | 9.45 |
| ILMN_2529254 | LOC223653 | 64.022 | 66.7712 | 72.0714 | 44.0204 | 37.9957 | 41.6299 | 1.65 | 0.10 | 9.45 |
| ILMN_1249486 | Mgl1 | 337.781 | 337.449 | 485.498 | 30.8081 | 127.473 | 114.992 | 5.94 | 2.55 | 9.45 |
| ILMN_2894211 | 8430408G22Rik | 73.0131 | 64.3754 | 55.1521 | 33.3645 | 31.603 | 30.255 | 2.02 | 0.11 | 9.45 |
| ILMN_2896805 | Psmd12 | 148.101 | 171.203 | 206.836 | 77.8464 | 126.685 | 133.269 | 1.60 | 0.16 | 9.45 |
| ILMN_2906473 | Gbl | 266.679 | 253.353 | 242.375 | 151.35 | 179.604 | 165.538 | 1.55 | 0.11 | 9.45 |
| ILMN_2821148 | Serhl | 165.843 | 202.624 | 140.398 | 68.4558 | 80.9844 | 69.9344 | 2.31 | 0.15 | 9.45 |
| ILMN_2685194 | Lass6 | 63.7303 | 76.289 | 85.0273 | 30.4902 | 30.7031 | 29.9149 | 2.47 | 0.22 | 9.45 |
| ILMN_3139875 | Acot1 | 87.6059 | 100.282 | 128.563 | 50.5489 | 56.6237 | 68.9806 | 1.79 | 0.04 | 9.45 |
| ILMN_1254577 | Al607873 | 98.2401 | 82.2416 | 110.359 | 31.6262 | 36.8739 | 32.9902 | 2.89 | 0.34 | 9.45 |
| ILMN_2526163 | LOC380753 | 58.693 | 65.5098 | 61.1632 | 40.2658 | 37.0268 | 37.1696 | 1.62 | 0.09 | 9.45 |
| ILMN_2593496 | Got2 | 250.005 | 371.042 | 377.416 | 158.659 | 239.539 | 216.55 | 1.62 | 0.06 | 9.45 |
| ILMN_2618714 | Pdgfb | 200.589 | 324.339 | 300.63 | 70.2625 | 100.932 | 76.9535 | 3.32 | 0.31 | 9.45 |
| ILMN_1255419 | Zfpn1a1 | 57.952 | 64.6896 | 67.9671 | 32.1947 | 33.5807 | 27.0043 | 2.08 | 0.22 | 9.45 |
| ILMN_1259488 | Mgea6 | 187.932 | 197.963 | 206.784 | 94.9623 | 137.195 | 99.8402 | 1.83 | 0.20 | 9.45 |
| ILMN_2836137 | E2f2 | 124.543 | 144.472 | 159.718 | 60.1469 | 89.7572 | 68.5264 | 2.00 | 0.21 | 9.45 |
| ILMN_2734729 | H2-Aa | 120.771 | 96.1291 | 106.339 | 50.4609 | 54.0207 | 36.4385 | 2.36 | 0.33 | 9.45 |
| ILMN_2742592 | Hist1h2be | 278.749 | 573.009 | 385.54 | 163.776 | 384.401 | 179.161 | 1.78 | 0.19 | 9.45 |
| ILMN_1254035 | Myo10 | 52.187 | 68.5964 | 67.1637 | 29.357 | 32.4906 | 30.9367 | 2.02 | 0.12 | 9.45 |
| ILMN_1256359 | Smox | 47.721 | 59.4659 | 60.5905 | 30.2443 | 32.779 | 33.8997 | 1.73 | 0.07 | 9.45 |
| ILMN_1226606 | Tmem132a | 252.95 | 378.103 | 472.027 | 165.737 | 220.591 | 333.247 | 1.55 | 0.09 | 9.45 |
| ILMN_1247832 | Cd74 | 120.225 | 110.307 | 90.2238 | 32.0138 | 55.4824 | 31.8229 | 2.86 | 0.51 | 9.45 |
| ILMN_2704919 | Ube2t | 48.4476 | 55.7575 | 45.7454 | 31.1464 | 31.3181 | 28.5945 | 1.65 | 0.07 | 9.45 |
| ILMN_2494707 | LOC381232 | 43.9483 | 48.7864 | 47.4492 | 29.6229 | 35.3182 | 28.389 | 1.51 | 0.08 | 9.45 |
| ILMN_2727663 | Tgfbi | 72.3304 | 106.531 | 103.039 | 30.5145 | 37.1042 | 30.3291 | 2.88 | 0.30 | 9.45 |
| ILMN_2435584 | scl0001978.1_6 | 323.084 | 457.449 | 504.059 | 193.521 | 224.73 | 275.432 | 1.85 | 0.11 | 9.45 |
| ILMN_1214071 | Ifitm1 | 202.756 | 267.787 | 337.874 | 38.3514 | 80.5801 | 54.5967 | 4.93 | 0.85 | 9.45 |
| ILMN_2552295 | Vcam1 | 99.9333 | 87.1573 | 106.544 | 57.7501 | 62.3063 | 71.5858 | 1.54 | 0.10 | 9.45 |
| ILMN_2814974 | Klra2 | 79.6905 | 108.516 | 122.823 | 28.4786 | 34.4396 | 30.6148 | 3.32 | 0.36 | 9.45 |
| ILMN_2922899 | Plcb2 | 52.2083 | 58.4757 | 67.5014 | 31.1035 | 32.6911 | 51.2296 | 1.59 | 0.14 | 9.45 |
| ILMN_1247540 | Vcan | 58.4595 | 59.6001 | 48.5533 | 33.6529 | 35.992 | 32.7154 | 1.63 | 0.07 | 9.45 |
| ILMN_2810405 | Myo1g | 112.665 | 99.2771 | 135.567 | 31.0478 | 42.2243 | 32.4181 | 3.39 | 0.54 | 9.45 |
| ILMN_2655336 | Vcan | 87.1722 | 118.57 | 99.0153 | 48.9433 | 52.8628 | 33.8756 | 2.32 | 0.33 | 9.45 |
| ILMN_1231012 | Lcp2 | 50.4248 | 55.6685 | 62.1287 | 31.9881 | 31.7046 | 32.196 | 1.75 | 0.10 | 9.45 |
| ILMN_2915232 | Cotl1 | 247.673 | 182.837 | 170.062 | 55.2838 | 37.2057 | 65.6713 | 3.99 | 0.71 | 9.45 |
| ILMN_1222059 | Thbs1 | 1191.26 | 1623.56 | 1613.82 | 427.005 | 537.658 | 171.413 | 5.07 | 2.17 | 9.45 |
| ILMN_2936380 | Sgpl1 | 76.1673 | 67.9833 | 77.8775 | 41.7466 | 47.3443 | 50.033 | 1.61 | 0.11 | 9.45 |
| ILMN_2585233 | Selpl | 64.5884 | 56.231 | 48.213 | 40.1101 | 34.137 | 32.8397 | 1.58 | 0.05 | 9.45 |
| ILMN_1242661 | Itgb2 | 73.5594 | 89.9637 | 81.0295 | 44.1862 | 39.8288 | 44.1643 | 1.92 | 0.18 | 9.45 |
| ILMN_3072427 | l11rn | 74.4756 | 61.3546 | 56.0791 | 41.3113 | 36.8553 | 35.6531 | 1.68 | 0.07 | 9.45 |
| ILMN_2577664 | Fcgr2b | 78.645 | 78.9582 | 57.4285 | 32.4023 | 36.5747 | 30.8478 | 2.15 | 0.16 | 9.45 |
| ILMN_2715234 | Rnmt11 | 82.8654 | 96.7753 | 106.862 | 41.0073 | 46.4818 | 78.4749 | 1.82 | 0.23 | 9.45 |
| ILMN_3043669 | Sla | 73.9528 | 70.2469 | 59.4795 | 46.4209 | 32.0101 | 36.2508 | 1.81 | 0.19 | 9.45 |
| ILMN_2957862 | Noc4I | 209.341 | 237.52 | 306.964 | 113.482 | 158.699 | 166.487 | 1.73 | 0.12 | 9.45 |
| ILMN_1222803 | Hspa9 | 229.715 | 320.263 | 370.133 | 137.138 | 212.354 | 207.089 | 1.66 | 0.08 | 9.45 |
| ILMN_2547840 | 2200005K02Rik | 192.637 | 186.067 | 173.103 | 76.4028 | 76.0771 | 110.319 | 2.18 | 0.31 | 9.45 |
| ILMN_1227907 | Gmfg | 147.447 | 136.477 | 186.773 | 61.2671 | 61.0607 | 55.4081 | 2.67 | 0.35 | 9.45 |
| ILMN_1242457 | Fpr2 | 153.684 | 97.4913 | 151.142 | 36.5815 | 31.2652 | 28.003 | 4.24 | 0.66 | 9.45 |
| ILMN_2752224 | Mrps28 | 88.4381 | 103.684 | 105.415 | 45.7269 | 78.8944 | 63.7256 | 1.63 | 0.18 | 9.45 |

Table A2. -Continued

| Gene_ID | Gene | LCA1 | LCA2 | LCA3 | RCA1 | RCA2 | RCA3 | LCA/RCA |  | q-value\% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | signal | signal | signal | signal | signal | signal | ratio | SEM |  |
| ILMN_2657478 | Cd53 | 63.5755 | 90.9569 | 83.7725 | 32.9734 | 35.9727 | 32.8526 | 2.34 | 0.20 | 9.45 |
| ILMN_1249498 | Plek | 57.0174 | 79.9951 | 73.4948 | 33.2295 | 37.6965 | 35.3666 | 1.97 | 0.13 | 9.45 |
| ILMN_1251669 | Evi2a | 82.2689 | 132.097 | 115.193 | 33.7059 | 39.7659 | 38.5166 | 2.92 | 0.26 | 9.45 |
| ILMN_1220418 | Hest | 136.677 | 92.8745 | 122.8 | 34.3575 | 39.3619 | 34.6893 | 3.29 | 0.48 | 9.45 |
| ILMN_2746501 | Csf3r | 69.2868 | 58.1453 | 64.0938 | 29.6236 | 35.7204 | 32.6136 | 1.98 | 0.21 | 9.45 |
| ILMN_2859847 | Pygl | 51.0557 | 68.4258 | 73.4562 | 32.046 | 35.2159 | 45.1164 | 1.72 | 0.11 | 9.45 |
| ILMN_2666487 | Ruvbl1 | 147.172 | 174.969 | 206.183 | 93.454 | 129.946 | 126.422 | 1.52 | 0.09 | 9.45 |
| ILMN_2745425 | Rcc1 | 161.416 | 220.994 | 195.97 | 73.0225 | 54.1906 | 80.9498 | 2.90 | 0.59 | 9.45 |
| ILMN_1248604 | D030029G14Rik | 70.6935 | 73.0021 | 65.1351 | 50.3384 | 48.6371 | 30.7995 | 1.67 | 0.22 | 9.45 |
| ILMN_2485839 | Tnfrsf1b | 107.917 | 132.878 | 95.6707 | 61.9638 | 68.3193 | 60.2337 | 1.76 | 0.10 | 9.45 |
| ILMN_3155245 | Arhgap25 | 140.997 | 187.482 | 152.592 | 51.9362 | 121.34 | 105.778 | 1.90 | 0.41 | 9.45 |
| ILMN_2495068 | scl000854.1_75 | 89.4428 | 92.8338 | 77.9331 | 43.8873 | 45.8507 | 51.9321 | 1.85 | 0.18 | 9.45 |
| ILMN_2720634 | Prmt5 | 113.534 | 152.14 | 170.153 | 65.5098 | 88.5023 | 80.2057 | 1.86 | 0.13 | 9.45 |
| ILMN_2653619 | Ctage5 | 246.576 | 238.368 | 234.446 | 120.932 | 175.409 | 125.929 | 1.75 | 0.20 | 9.45 |
| ILMN_2637714 | Rasa3 | 261.901 | 368.445 | 303.324 | 166.879 | 189.742 | 114.384 | 2.05 | 0.32 | 9.45 |
| ILMN_2595732 | LOC100046232 | 298.299 | 340.374 | 365.872 | 147.385 | 97.7021 | 57.3349 | 3.96 | 1.28 | 9.45 |
| ILMN_1215085 | Fkbp10 | 149.929 | 234.822 | 253.158 | 88.4708 | 148.241 | 133.604 | 1.72 | 0.09 | 9.45 |
| ILMN_1220893 | Zfp281 | 116.143 | 125.99 | 133.604 | 84.3139 | 80.2212 | 73.3344 | 1.59 | 0.13 | 9.45 |
| ILMN_2803674 | S100a9 | 644.295 | 504.87 | 463.707 | 181.349 | 273.803 | 135.985 | 2.94 | 0.55 | 9.45 |
| ILMN_1252673 | Cugbp2 | 121.93 | 89.3088 | 116.804 | 95.8404 | 52.6885 | 68.2533 | 1.56 | 0.14 | 9.45 |
| ILMN_2864309 | OTTMUSG00000 | 78.8015 | 59.7396 | 57.4533 | 47.3468 | 42.2183 | 31.526 | 1.63 | 0.12 | 9.45 |
| ILMN_2702508 | Ebna1bp2 | 291.764 | 429.095 | 456.204 | 202.915 | 270.278 | 273.803 | 1.56 | 0.07 | 9.45 |
| ILMN_1213708 | 4732462B05Rik | 175.328 | 163.203 | 138.554 | 95.4991 | 110.484 | 95.1137 | 1.59 | 0.12 | 9.45 |
| ILMN_2539454 | LOC100042952 | 220.177 | 238.713 | 206.103 | 130.672 | 135.961 | 155.122 | 1.59 | 0.13 | 9.45 |
| ILMN_3074985 | H2afz | 479.432 | 814.589 | 587.133 | 322.458 | 501.453 | 372.378 | 1.56 | 0.04 | 9.45 |
| ILMN_2620069 | Rpo1-4 | 123.776 | 103.052 | 112.023 | 89.5179 | 38.5027 | 67.0893 | 1.91 | 0.39 | 9.45 |
| ILMN_2669441 | Eftud2 | 243.605 | 396.587 | 404.776 | 156.045 | 237.52 | 222.43 | 1.68 | 0.07 | 9.45 |
| ILMN_2918499 | Abcb1b | 75.4227 | 66.5557 | 69.6153 | 56.9205 | 32.488 | 42.3462 | 1.67 | 0.21 | 9.45 |
| ILMN_1220996 | Ptpn6 | 169.716 | 153.499 | 232.057 | 57.1494 | 45.5891 | 39.1416 | 4.09 | 0.93 | 9.92 |
| ILMN_1245750 | Prkcd | 71.4567 | 111.699 | 104.522 | 37.7644 | 49.2345 | 62.7581 | 1.94 | 0.18 | 9.92 |
| ILMN_2686044 | Eif5a | 2057.08 | 2738.78 | 2694.64 | 1466.51 | 1470.72 | 1701.41 | 1.62 | 0.13 | 9.92 |
| ILMN_1254630 | Ptpre | 56.8771 | 73.2747 | 66.0706 | 38.1517 | 38.9873 | 40.061 | 1.67 | 0.11 | 9.92 |
| ILMN_2833243 | C330023M02Rik | 67.7556 | 59.0485 | 53.0734 | 38.0122 | 33.6462 | 36.813 | 1.66 | 0.11 | 9.92 |
| ILMN_1226785 | Homer1 | 70.2128 | 54.5932 | 82.3784 | 39.7392 | 31.219 | 39.3394 | 1.87 | 0.11 | 9.92 |
| ILMN_2712066 | Pgd | 574.081 | 478.684 | 597.984 | 395.758 | 321.509 | 301.621 | 1.64 | 0.17 | 9.92 |
| ILMN_1250947 | Txndc5 | 374.85 | 615.608 | 490.31 | 231.068 | 325.412 | 188.832 | 2.04 | 0.29 | 9.92 |
| ILMN_2837779 | Trpv2 | 55.1453 | 49.2566 | 45.0145 | 30.2019 | 31.773 | 30.266 | 1.62 | 0.10 | 9.92 |
| ILMN_2685668 | Nek6 | 65.568 | 64.9197 | 61.8051 | 34.4664 | 35.2325 | 44.87 | 1.71 | 0.17 | 9.92 |
| ILMN_2820893 | Selplg | 140.46 | 92.6037 | 122.352 | 35.6979 | 42.4189 | 30.2311 | 3.39 | 0.60 | 9.92 |
| ILMN_1237948 | Tes | 60.1162 | 75.3485 | 85.4126 | 31.5681 | 39.833 | 32.3082 | 2.15 | 0.25 | 9.92 |
| ILMN_2593143 | Dock10 | 48.1056 | 50.8025 | 59.1494 | 33.7463 | 31.4091 | 33.7003 | 1.60 | 0.10 | 9.92 |
| ILMN_3154691 | Sirpb1 | 79.5718 | 57.0543 | 73.5632 | 29.8909 | 31.5653 | 36.2726 | 2.17 | 0.26 | 9.92 |
| ILMN_2633275 | Golt1b | 59.4795 | 59.6169 | 62.258 | 32.6962 | 39.2804 | 47.3007 | 1.55 | 0.15 | 9.92 |
| ILMN_1257019 | BC037034 | 446.474 | 352.563 | 517.081 | 293.505 | 222.2 | 266.214 | 1.68 | 0.13 | 9.92 |
| ILMN_2507890 | Ddx27 | 129.975 | 113.289 | 154.104 | 64.471 | 76.3964 | 77.5963 | 1.83 | 0.17 | 9.92 |
| ILMN_2672190 | Id1 | 62.2339 | 107.621 | 200.265 | 183.975 | 227.904 | 325.688 | 0.48 | 0.08 | 0.00 |
| ILMN_2588249 | S3-12 | 78.0149 | 38.9636 | 34.8013 | 149.177 | 114.816 | 108.516 | 0.39 | 0.06 | 0.00 |
| ILMN_3113303 | Atp2b2 | 116.025 | 76.6974 | 77.1416 | 289.127 | 267.296 | 256.483 | 0.33 | 0.04 | 0.00 |
| ILMN_2619136 | Pthlh | 48.2381 | 53.4097 | 41.8714 | 190.072 | 194.052 | 195.665 | 0.25 | 0.02 | 0.00 |
| ILMN_2687547 | Sdpr | 853.481 | 561.222 | 546.579 | 1374.31 | 1156.68 | 1137.1 | 0.53 | 0.05 | 2.91 |
| ILMN_2765224 | Bcam | 246.143 | 178.001 | 127.729 | 772.164 | 787.544 | 699.336 | 0.24 | 0.04 | 2.91 |
| ILMN_1237224 | Kctd12 | 143.312 | 94.4929 | 79.4847 | 254.883 | 218.563 | 190.497 | 0.47 | 0.05 | 2.91 |
| ILMN_3037580 | Rbms2 | 148.529 | 77.8341 | 70.8423 | 251.425 | 167.529 | 168.541 | 0.49 | 0.05 | 3.26 |
| ILMN_1228233 | Gstm1 | 100.51 | 82.4163 | 69.1176 | 163.203 | 153.355 | 134.751 | 0.56 | 0.03 | 3.26 |
| ILMN_1240938 | AW212394 | 291.864 | 256.664 | 238.824 | 544.239 | 550.372 | 531.947 | 0.48 | 0.03 | 3.26 |
| ILMN_2595664 | Dhh | 296.17 | 457.271 | 327.064 | 924.811 | 1021.15 | 1000.24 | 0.37 | 0.04 | 3.26 |
| ILMN_2728539 | Exdl2 | 51.7371 | 53.091 | 64.6525 | 81.1776 | 84.9802 | 94.8571 | 0.65 | 0.02 | 3.26 |
| ILMN_2630182 | Syp | 43.117 | 38.0969 | 36.6536 | 86.5402 | 77.1416 | 80.5596 | 0.48 | 0.01 | 3.26 |
| ILMN_1222685 | 1200016G03Rik | 112.383 | 66.7949 | 66.1079 | 210.203 | 149.539 | 160.951 | 0.46 | 0.04 | 6.00 |
| ILMN_1245307 | Fbln2 | 72.3688 | 102.79 | 95.5123 | 127.322 | 151.656 | 151.713 | 0.63 | 0.03 | 6.00 |
| ILMN_2628567 | Phlda3 | 35.6836 | 38.3845 | 38.6554 | 57.5053 | 60.4906 | 61.8387 | 0.63 | 0.00 | 6.00 |
| ILMN_1236168 | C030034J23Rik | 230.646 | 77.2548 | 72.6993 | 443.702 | 255.527 | 254.035 | 0.37 | 0.08 | 6.00 |
| ILMN_2710159 | MGC41689 | 204.383 | 168.578 | 108.339 | 514.959 | 422.262 | 380.345 | 0.36 | 0.04 | 6.00 |
| ILMN_1253178 | Aldh3a1 | 111.994 | 88.4553 | 97.9298 | 256.664 | 226.402 | 264.792 | 0.40 | 0.02 | 6.00 |
| ILMN_2576994 | C230096K16Rik | 157.077 | 142.681 | 108.976 | 226.946 | 202.788 | 180.299 | 0.67 | 0.03 | 6.00 |
| ILMN_2697304 | Eln | 1000.24 | 1705.22 | 1208.86 | 1988.5 | 2515.64 | 2212.67 | 0.58 | 0.05 | 6.00 |
| ILMN_2904686 | Cyb5r3 | 229.213 | 260.79 | 249.825 | 405.187 | 403.518 | 421.073 | 0.60 | 0.02 | 6.87 |

Table A2. -Continued

| Gene_ID | Gene | LCA1 | LCA2 | LCA3 | RCA1 | RCA2 | RCA3 | LCA/RCA |  | q-value\% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | signal | signal | signal | signal | signal | signal | ratio | SEM |  |
| ILMN_1212935 | Fzd4 | 76.9535 | 72.4573 | 71.6006 | 114.847 | 106.663 | 111.264 | 0.66 | 0.01 | 6.87 |
| ILMN_1258578 | Ahnak | 382.316 | 306.669 | 385.115 | 595.809 | 508.434 | 634.982 | 0.62 | 0.01 | 6.87 |
| ILMN_2658804 | Rras | 127.353 | 132.034 | 92.5633 | 196.565 | 215.554 | 175.816 | 0.60 | 0.04 | 6.87 |
| ILMN_2441501 | Clstn1 | 45.3194 | 52.187 | 51.0351 | 77.2405 | 83.4216 | 79.0062 | 0.62 | 0.02 | 6.87 |
| ILMN_2769567 | F2rl1 | 235.524 | 159.184 | 167.442 | 376.455 | 282.065 | 279.041 | 0.60 | 0.02 | 6.87 |
| ILMN_1238603 | Pcolce2 | 82.5011 | 66.228 | 59.1973 | 149.202 | 134.56 | 140.146 | 0.49 | 0.04 | 6.87 |
| ILMN_3066763 | Arl4a | 90.8471 | 148.592 | 98.3375 | 285.216 | 298.602 | 269.817 | 0.39 | 0.05 | 6.87 |
| ILMN_2557319 | D530030K12Rik | 173.467 | 202.984 | 205.466 | 299.497 | 301.047 | 316.914 | 0.63 | 0.03 | 6.87 |
| ILMN_2598103 | Emp2 | 417.299 | 445.245 | 436.385 | 1126.37 | 997.387 | 1145.03 | 0.40 | 0.02 | 6.87 |
| ILMN_2605539 | Sgcd | 65.639 | 50.9856 | 44.1843 | 112.578 | 93.1222 | 96.3487 | 0.53 | 0.04 | 6.87 |
| ILMN_2772855 | Plek2 | 37.2072 | 51.4746 | 51.8662 | 88.2238 | 93.4264 | 95.4991 | 0.51 | 0.04 | 6.87 |
| ILMN_2736783 | Kctd12 | 512.111 | 295.475 | 269.308 | 884.251 | 732.913 | 601.71 | 0.48 | 0.05 | 6.87 |
| ILMN_2712873 | Cyb5r3 | 146.274 | 176.566 | 153.984 | 233.764 | 280.452 | 267.013 | 0.61 | 0.02 | 6.87 |
| ILMN_2625920 | Aoc3 | 131.367 | 35.614 | 35.7044 | 263.466 | 148.796 | 138.005 | 0.33 | 0.08 | 6.87 |
| ILMN_3061923 | Rbms2 | 176.925 | 138.5 | 95.6101 | 261.411 | 241.544 | 177.17 | 0.60 | 0.04 | 6.87 |
| ILMN_2691641 | Gja5 | 1008.44 | 1000.24 | 868.589 | 1637.38 | 1613.82 | 1662.57 | 0.59 | 0.03 | 6.87 |
| ILMN_1240266 | Ankrd25 | 188.414 | 244.001 | 208.29 | 413.715 | 435.703 | 377.164 | 0.52 | 0.03 | 6.87 |
| ILMN_2765101 | Nkx6-2 | 186.73 | 243.29 | 238.939 | 284.65 | 354.738 | 368.284 | 0.66 | 0.01 | 6.87 |
| ILMN_2639809 | Nucb1 | 141.533 | 126.85 | 125.096 | 219.022 | 194.959 | 214.159 | 0.63 | 0.02 | 6.87 |
| ILMN_2710419 | Plec1 | 529.3 | 401.323 | 461.117 | 830.81 | 639.564 | 782.283 | 0.62 | 0.01 | 6.87 |
| ILMN_2798086 | Fchsd2 | 222.609 | 201.439 | 228.433 | 345.459 | 366.42 | 376.647 | 0.60 | 0.03 | 6.87 |
| ILMN_1220170 | Tek | 422.95 | 326.735 | 317.866 | 699.822 | 620.507 | 685.316 | 0.53 | 0.04 | 6.87 |
| ILMN_1230039 | Hyal2 | 127.702 | 148.38 | 187.358 | 294.463 | 367.707 | 407.887 | 0.43 | 0.02 | 6.87 |
| ILMN_2745370 | Sult1a1 | 252.628 | 126.991 | 73.8402 | 405.668 | 327.311 | 277.179 | 0.43 | 0.10 | 6.87 |
| ILMN_1257053 | Trrp1 | 37.8964 | 49.098 | 61.3483 | 107.439 | 124.856 | 118.44 | 0.42 | 0.05 | 6.87 |
| ILMN_2839886 | Mxd4 | 81.9997 | 70.0674 | 59.3453 | 143.589 | 137.012 | 110.093 | 0.54 | 0.02 | 6.87 |
| ILMN_2908132 | Gja5 | 1742.7 | 1605.47 | 1567.3 | 2583.93 | 2583.93 | 2738.78 | 0.62 | 0.03 | 6.87 |
| ILMN_1220023 | Snhg10 | 50.3966 | 54.7987 | 77.4215 | 112.852 | 138.5 | 151.214 | 0.45 | 0.03 | 6.87 |
| ILMN_3109360 | Plec1 | 98.3757 | 100.702 | 128.226 | 166.972 | 160.833 | 179.957 | 0.64 | 0.04 | 6.87 |
| ILMN_2502860 | Ern1 | 222.809 | 172.126 | 184.279 | 321.206 | 288.074 | 318.448 | 0.62 | 0.04 | 6.87 |
| ILMN_3139103 | Adam15 | 83.5285 | 67.1136 | 94.1663 | 228.742 | 214.244 | 284.473 | 0.34 | 0.02 | 6.87 |
| ILMN_1215859 | Serpina1b | 33.3142 | 35.683 | 34.7094 | 59.6241 | 58.8416 | 56.4895 | 0.59 | 0.02 | 6.87 |
| ILMN_1213456 | Dhrs7 | 99.8878 | 118.25 | 94.9623 | 198.193 | 209.535 | 216.993 | 0.50 | 0.04 | 6.87 |
| ILMN_2725493 | 2700078K21Rik | 40.2563 | 47.9145 | 43.114 | 99.6693 | 102.504 | 115.053 | 0.42 | 0.03 | 6.87 |
| ILMN_2713835 | Nos3 | 128.411 | 151.047 | 109.104 | 249.905 | 311.942 | 274.064 | 0.47 | 0.03 | 6.87 |
| ILMN_1214275 | Ddef2 | 130.455 | 87.759 | 63.6744 | 166.922 | 135.33 | 110.019 | 0.67 | 0.06 | 7.51 |
| ILMN_2596117 | Kctd10 | 275.84 | 316.914 | 308.662 | 457.748 | 479.924 | 534.928 | 0.61 | 0.02 | 7.51 |
| ILMN_2953751 | Sec1411 | 111.699 | 133.722 | 117.914 | 204.504 | 201.06 | 202.615 | 0.60 | 0.04 | 7.51 |
| ILMN_2715195 | Stxbp3a | 87.9518 | 88.8714 | 91.8696 | 148.916 | 134.164 | 142.943 | 0.63 | 0.02 | 7.51 |
| ILMN_2801891 | Cygb | 63.3289 | 27.8296 | 36.1873 | 107.03 | 85.1764 | 82.1725 | 0.45 | 0.08 | 7.51 |
| ILMN_1236917 | Tmem59 | 122.279 | 128.864 | 122.134 | 208.611 | 233.426 | 197.73 | 0.59 | 0.02 | 7.51 |
| ILMN_1224018 | Foxk1 | 45.8532 | 62.8697 | 45.1941 | 100.662 | 114.552 | 114.358 | 0.47 | 0.04 | 7.51 |
| ILMN_3022252 | Arhgef15 | 358.839 | 287.917 | 182.699 | 550.372 | 423.744 | 368.566 | 0.61 | 0.06 | 7.51 |
| ILMN_2646052 | C4a | 62.815 | 42.36 | 38.3445 | 89.4502 | 63.9564 | 60.3816 | 0.67 | 0.02 | 7.51 |
| ILMN_1217742 | Atp2b4 | 205.67 | 93.0616 | 122.622 | 356.859 | 310.617 | 326.853 | 0.42 | 0.08 | 7.51 |
| ILMN_1221146 | Cyt11 | 882.036 | 477.684 | 479.432 | 1479.31 | 1325.04 | 1332.33 | 0.44 | 0.08 | 7.51 |
| ILMN_1230578 | LOC100045421 | 30.9348 | 33.1017 | 43.1599 | 71.006 | 64.9596 | 74.3976 | 0.51 | 0.04 | 7.51 |
| ILMN_2710274 | Slc9a3r2 | 423.177 | 347.456 | 309.668 | 1050.18 | 1016.65 | 1198.69 | 0.33 | 0.04 | 8.11 |
| ILMN_2630039 | E130014J05Rik | 64.2269 | 119.518 | 77.3166 | 128.519 | 166.304 | 140.248 | 0.59 | 0.07 | 8.11 |
| ILMN_2738345 | Lims2 | 123.066 | 109.173 | 96.2198 | 313.307 | 238.461 | 264.652 | 0.40 | 0.03 | 8.11 |
| ILMN_1253182 | Hs3st1 | 144.693 | 109.309 | 125.627 | 196.419 | 182.637 | 192.889 | 0.66 | 0.04 | 8.11 |
| ILMN_1245446 | 5730405I09Rik | 103.851 | 70.1408 | 77.6978 | 143.21 | 125.096 | 126.027 | 0.63 | 0.05 | 8.11 |
| ILMN_2970167 | Wwp2 | 99.4163 | 83.5547 | 89.5852 | 168.455 | 132.499 | 146.379 | 0.61 | 0.01 | 8.11 |
| ILMN_2942674 | Lims2 | 114.145 | 103.081 | 86.1846 | 317.148 | 250.321 | 302.675 | 0.35 | 0.04 | 8.11 |
| ILMN_1243080 | Taf9b | 78.8229 | 129.813 | 96.5937 | 141.805 | 200.649 | 146.191 | 0.62 | 0.03 | 8.11 |
| ILMN_1243407 | Klk10 | 72.4259 | 166.042 | 96.5406 | 1021.15 | 810.832 | 1025.49 | 0.12 | 0.04 | 8.11 |
| ILMN_2416218 | 5530400B01Rik | 43.8792 | 53.688 | 70.2938 | 116.319 | 132.471 | 172.365 | 0.40 | 0.01 | 8.11 |
| ILMN_2511768 | Ttc17 | 94.7962 | 84.1399 | 94.3132 | 147.573 | 156.757 | 149.929 | 0.60 | 0.03 | 8.11 |
| ILMN_2940642 | St6galnac2 | 181.706 | 108.618 | 98.5505 | 341.863 | 306.268 | 338.523 | 0.39 | 0.07 | 8.11 |
| ILMN_2659879 | Adcy6 | 94.5228 | 77.2323 | 64.5074 | 174.869 | 137.052 | 123.01 | 0.54 | 0.01 | 8.11 |
| ILMN_2744414 | Nme3 | 55.2283 | 61.5117 | 98.0606 | 97.0437 | 112.407 | 157.92 | 0.58 | 0.02 | 8.11 |
| ILMN_2778181 | Plekha6 | 34.0601 | 39.3109 | 39.4733 | 82.2512 | 77.6384 | 94.4418 | 0.45 | 0.03 | 8.11 |
| ILMN_1213850 | Col4a3 | 290.506 | 100.468 | 80.1506 | 614.723 | 472.324 | 567.125 | 0.28 | 0.10 | 8.11 |
| ILMN_2638114 | Ptn | 32.7443 | 27.7131 | 31.5817 | 53.9461 | 44.1532 | 50.6546 | 0.62 | 0.01 | 8.11 |
| ILMN_1225825 | LOC100039175 | 149.292 | 113.675 | 75.9107 | 236.689 | 211.11 | 203.404 | 0.51 | 0.08 | 8.11 |
| ILMN_1248397 | Smarcd3 | 48.44 | 46.5846 | 60.204 | 92.1682 | 79.7314 | 107.24 | 0.56 | 0.02 | 8.11 |
| ILMN_1239381 | KIf3 | 161.902 | 147.573 | 159.426 | 504.059 | 372.064 | 480.324 | 0.35 | 0.02 | 8.11 |
| ILMN_2633386 | LOC100044190 | 183.189 | 208.452 | 165.737 | 381.449 | 369.561 | 296.068 | 0.53 | 0.03 | 8.11 |

Table A2. -Continued

| Gene_ID | Gene | LCA1 | LCA2 | LCA3 | RCA1 | RCA2 | RCA3 | LCA/RCA |  | q-value\% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | signal | signal | signal | signal | signal | signal | ratio | SEM |  |
| ILMN_2669062 | Pi16 | 544.239 | 258.436 | 259.511 | 1241.79 | 1032.64 | 1305.32 | 0.30 | 0.07 | 8.11 |
| ILMN_2479359 | Tmod3 | 100.151 | 96.7873 | 87.0908 | 178.613 | 149.639 | 157.483 | 0.59 | 0.03 | 8.11 |
| ILMN_2433213 | KIf7 | 197.15 | 148.324 | 162.419 | 301.34 | 292.51 | 263.754 | 0.59 | 0.04 | 8.11 |
| ILMN_1259554 | Marveld1 | 295.742 | 218.699 | 200.156 | 578.387 | 409.629 | 486.774 | 0.49 | 0.04 | 8.11 |
| ILMN_3094506 | Arhgef15 | 249.151 | 184.614 | 195.81 | 379.653 | 368.445 | 396.069 | 0.55 | 0.05 | 8.11 |
| ILMN_2755833 | Lrrc3b | 42.248 | 35.4296 | 34.0641 | 70.0455 | 66.1659 | 56.2598 | 0.58 | 0.02 | 8.11 |
| ILMN_2723024 | BC004044 | 34.7697 | 43.6311 | 49.7896 | 57.1241 | 66.6586 | 67.272 | 0.67 | 0.04 | 8.11 |
| ILMN_1234318 | Ubxd1 | 282.467 | 213.541 | 225.574 | 403.757 | 401.323 | 379.425 | 0.61 | 0.05 | 8.11 |
| ILMN_2699637 | Lsr | 127.923 | 87.5939 | 111.784 | 337.268 | 221.61 | 294.463 | 0.38 | 0.01 | 8.11 |
| ILMN_2999439 | KIf4 | 107.856 | 84.3514 | 84.215 | 299.601 | 295.852 | 372.58 | 0.29 | 0.04 | 8.11 |
| ILMN_1231439 | Aatk | 157.92 | 175.917 | 186.73 | 293.83 | 336.911 | 395.84 | 0.51 | 0.02 | 8.11 |
| ILMN_2675760 | 2310046K01Rik | 172.059 | 111.635 | 195.131 | 563.411 | 360.928 | 502.928 | 0.33 | 0.03 | 8.11 |
| ILMN_2661422 | Ramp2 | 504.87 | 475.438 | 389.274 | 1054.3 | 917.819 | 1088.19 | 0.45 | 0.05 | 8.11 |
| ILMN_1248994 | 4933407C03Rik | 127.219 | 101.735 | 75.8184 | 223.594 | 193.564 | 210.536 | 0.48 | 0.06 | 8.11 |
| ILMN_1260405 | D330008E13Rik | 98.0606 | 73.3663 | 45.7439 | 136.276 | 100.97 | 85.327 | 0.66 | 0.06 | 8.11 |
| ILMN_2675232 | Klk8 | 96.2111 | 93.4264 | 80.4456 | 196.733 | 199.298 | 229.119 | 0.44 | 0.04 | 8.11 |
| ILMN_2608133 | Rhpn2 | 259.918 | 187.358 | 208.938 | 747.241 | 740.239 | 966.087 | 0.27 | 0.04 | 8.11 |
| ILMN_1248740 | Sema3f | 587.133 | 651.489 | 606.935 | 1186.2 | 1161.24 | 1409.35 | 0.50 | 0.04 | 8.11 |
| ILMN_2609025 | Elmo1 | 134.465 | 110.413 | 101.262 | 208.907 | 163.203 | 153.499 | 0.66 | 0.01 | 8.11 |
| ILMN_1230129 | Adamts1 | 122.238 | 124.704 | 151.871 | 201.488 | 178.513 | 233.764 | 0.65 | 0.03 | 8.11 |
| ILMN_1231802 | Tbc1d9b | 33.741 | 37.4625 | 38.1107 | 54.4372 | 52.911 | 57.5937 | 0.66 | 0.03 | 8.11 |
| ILMN_2790842 | Jam2 | 124.676 | 102.814 | 90.6203 | 272.976 | 221.491 | 279.166 | 0.42 | 0.05 | 8.11 |
| ILMN_1242787 | 4930557M22Rik | 41.1506 | 42.8033 | 41.6011 | 68.2616 | 62.2175 | 64.0826 | 0.65 | 0.02 | 8.11 |
| ILMN_1228031 | Dusp8 | 87.1472 | 164.237 | 131.982 | 446.474 | 539.755 | 367.087 | 0.29 | 0.05 | 8.11 |
| ILMN_1224589 | Tmem77 | 79.4451 | 72.5412 | 54.4581 | 119.991 | 100.057 | 92.3784 | 0.66 | 0.04 | 8.11 |
| ILMN_2485594 | B130005I07Rik | 34.2484 | 40.5641 | 40.2952 | 58.0717 | 58.3733 | 59.1772 | 0.66 | 0.03 | 8.11 |
| ILMN_1237264 | Trspap1 | 53.9897 | 45.0626 | 66.6205 | 98.3551 | 82.5496 | 96.286 | 0.60 | 0.05 | 8.11 |
| ILMN_2678355 | Amigo2 | 200.895 | 159.649 | 181.816 | 378.103 | 379.425 | 465.668 | 0.45 | 0.04 | 8.11 |
| ILMN_1218934 | Rdm1 | 103.409 | 86.2467 | 55.7304 | 179.384 | 135.081 | 125.527 | 0.55 | 0.06 | 8.11 |
| ILMN_2777082 | P4ha2 | 216.879 | 359.701 | 623.623 | 776.328 | 864.305 | 964.159 | 0.45 | 0.11 | 8.11 |
| ILMN_2430542 | Nos3 | 121.33 | 136.738 | 98.4581 | 221.353 | 283.725 | 260.402 | 0.47 | 0.05 | 8.11 |
| ILMN_3003864 | Cgnl1 | 334.932 | 239.642 | 156.385 | 591.126 | 537.82 | 564.432 | 0.43 | 0.08 | 8.11 |
| ILMN_2653215 | Nagk | 157.705 | 141.767 | 138.349 | 240.257 | 259.054 | 216.306 | 0.61 | 0.03 | 8.11 |
| ILMN_2788593 | Nos3 | 113.98 | 123.912 | 103.799 | 233.023 | 284.88 | 206.059 | 0.48 | 0.02 | 8.11 |
| ILMN_2640248 | Lama5 | 200.724 | 203.499 | 200.036 | 371.901 | 326.735 | 309.207 | 0.60 | 0.03 | 8.11 |
| ILMN_2635631 | Sema3f | 417.684 | 390.156 | 391.19 | 787.544 | 729.074 | 923.072 | 0.50 | 0.04 | 8.11 |
| ILMN_2876325 | Fbxo34 | 49.326 | 60.209 | 66.0396 | 88.1484 | 104.785 | 125.057 | 0.55 | 0.01 | 8.11 |
| ILMN_3111298 | Mcfd2 | 169.684 | 219.692 | 244.888 | 265.869 | 350.281 | 403.059 | 0.62 | 0.01 | 8.11 |
| ILMN_1241903 | Klf4 | 43.9331 | 32.111 | 37.4217 | 91.3567 | 96.1915 | 113.289 | 0.38 | 0.05 | 8.11 |
| ILMN_3132949 | Fbln2 | 70.0583 | 73.3238 | 82.0111 | 119.96 | 110.92 | 115.302 | 0.65 | 0.04 | 8.11 |
| ILMN_2920759 | Clip1 | 185.174 | 121.682 | 112.001 | 278.804 | 181.042 | 182.837 | 0.65 | 0.02 | 8.11 |
| ILMN_1218949 | Mterfd2 | 301.69 | 105.697 | 77.5773 | 482.642 | 314.461 | 367.212 | 0.39 | 0.12 | 8.11 |
| ILMN_2706730 | Ptprr | 60.4528 | 46.3893 | 39.1565 | 116.04 | 127.268 | 128.836 | 0.40 | 0.06 | 8.11 |
| ILMN_1230880 | Myst4 | 71.5004 | 53.07 | 53.6116 | 109.8 | 83.1432 | 99.9707 | 0.61 | 0.04 | 8.11 |
| ILMN_2461707 | Rbms2 | 130.959 | 100.308 | 98.508 | 170.765 | 157.257 | 161.466 | 0.67 | 0.05 | 8.11 |
| ILMN_2427021 | Megf6 | 48.688 | 63.0216 | 48.2948 | 109.131 | 101.175 | 100.334 | 0.52 | 0.05 | 8.11 |
| ILMN_1241892 | Sod3 | 134.538 | 92.696 | 68.8795 | 177.599 | 158.954 | 135.213 | 0.62 | 0.07 | 8.11 |
| ILMN_3033533 | Add1 | 274.507 | 256.824 | 219.692 | 383.771 | 398.773 | 399.875 | 0.64 | 0.05 | 8.11 |
| ILMN_1254927 | Ly6c1 | 364.13 | 200.724 | 143.763 | 660.535 | 688.27 | 620.507 | 0.36 | 0.10 | 8.11 |
| ILMN_1248947 | Mal | 137.485 | 72.275 | 127.908 | 256.938 | 195.398 | 204.444 | 0.51 | 0.07 | 8.11 |
| ILMN_1221264 | KIf4 | 44.6148 | 39.8925 | 33.0754 | 133.999 | 95.2519 | 115.346 | 0.35 | 0.04 | 8.11 |
| ILMN_2590034 | Ltbp4 | 782.283 | 543.771 | 452.054 | 1055.94 | 966.087 | 914.47 | 0.60 | 0.07 | 8.11 |
| ILMN_2596346 | Dcn | 90.4845 | 51.7102 | 45.442 | 124.329 | 91.8195 | 71.5224 | 0.64 | 0.05 | 8.11 |
| ILMN_2706853 | Scamp1 | 762.104 | 595.205 | 641.17 | 1039.71 | 1045.49 | 961.692 | 0.66 | 0.05 | 8.11 |
| ILMN_2599955 | Btbd3 | 305.366 | 227.618 | 142.411 | 494.447 | 533.091 | 453.325 | 0.45 | 0.09 | 8.11 |
| ILMN_2578183 | E330020K23Rik | 30.5007 | 36.3718 | 42.1806 | 60.0792 | 56.6584 | 65.6786 | 0.60 | 0.04 | 8.11 |
| ILMN_2715558 | Arhgap17 | 163.203 | 148.815 | 145.273 | 255.256 | 206.389 | 235.048 | 0.66 | 0.03 | 8.11 |
| ILMN_1235230 | Pdlim3 | 282.316 | 197.642 | 198.515 | 366.616 | 338.784 | 320.983 | 0.66 | 0.06 | 8.11 |
| ILMN_2759079 | Ppap2a | 118.721 | 159.764 | 187.064 | 237.352 | 236.32 | 268.555 | 0.62 | 0.06 | 8.11 |
| ILMN_1228245 | Prickle1 | 51.8263 | 58.89 | 39.0885 | 75.7577 | 93.4373 | 64.3906 | 0.64 | 0.02 | 8.11 |
| ILMN_3137804 | Pbx1 | 91.7399 | 62.7876 | 56.8554 | 132.442 | 112.466 | 88.0602 | 0.63 | 0.04 | 8.11 |
| ILMN_2618408 | Icam2 | 465.668 | 496.633 | 413.078 | 912.268 | 862.8 | 1029.2 | 0.50 | 0.05 | 8.11 |
| ILMN_1249888 | Adcy6 | 56.1244 | 54.8139 | 75.563 | 147.893 | 147.525 | 132.797 | 0.44 | 0.06 | 8.11 |
| ILMN_1215879 | Pkhd111 | 52.5954 | 48.9358 | 42.2605 | 76.8252 | 81.1776 | 80.1112 | 0.60 | 0.05 | 8.11 |
| ILMN_1218241 | Slc9a3r2 | 38.2593 | 41.671 | 40.0713 | 62.9502 | 78.0995 | 78.1575 | 0.55 | 0.03 | 8.11 |
| ILMN_3049559 | C4b | 133.533 | 61.2284 | 57.7642 | 205.866 | 137.617 | 104.479 | 0.55 | 0.06 | 8.11 |
| ILMN_1255416 | Ly6a | 1104.46 | 830.81 | 652.951 | 1597.38 | 1529.47 | 1518.64 | 0.55 | 0.08 | 8.11 |
| ILMN_1257193 | Ppm1a | 75.7351 | 83.5746 | 96.6313 | 129.487 | 117.852 | 150.578 | 0.65 | 0.04 | 8.11 |

Table A2. -Continued

| Gene_ID | Gene | LCA1 | LCA2 | LCA3 | RCA1 | RCA2 | RCA3 | LCA/RCA |  | q-value\% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | signal | signal | signal | signal | signal | signal | ratio | SEM |  |
| ILMN_1241605 | LOC383884 | 54.6585 | 35.6853 | 30.1919 | 72.1759 | 60.7634 | 49.4577 | 0.65 | 0.05 | 8.11 |
| ILMN_2700166 | Ccnd2 | 360.795 | 240.15 | 297.852 | 494 | 455.732 | 446.189 | 0.64 | 0.06 | 8.11 |
| ILMN_1225657 | 2410095B20Rik | 55.062 | 45.0902 | 42.8424 | 86.3618 | 65.8265 | 73.194 | 0.64 | 0.03 | 8.11 |
| ILMN_2896843 | Cd248 | 48.8687 | 32.4954 | 63.9994 | 83.2478 | 88.5625 | 110.744 | 0.51 | 0.07 | 8.11 |
| ILMN_2513922 | Prdm16 | 41.6079 | 39.0039 | 49.0403 | 72.0203 | 63.8746 | 69.0167 | 0.63 | 0.04 | 8.11 |
| ILMN_2614380 | Map3k1 | 303.793 | 241.665 | 168.945 | 421.91 | 364.13 | 354.311 | 0.62 | 0.07 | 8.11 |
| ILMN_1248895 | Cachd1 | 45.9188 | 30.615 | 37.0233 | 73.8569 | 57.0335 | 55.5248 | 0.61 | 0.04 | 8.11 |
| ILMN_1260571 | Spna2 | 191.048 | 142.571 | 131.147 | 262.266 | 248.325 | 198.585 | 0.65 | 0.04 | 8.11 |
| ILMN_2640570 | Pak4 | 163.982 | 189.45 | 223.33 | 358.386 | 531.947 | 489.502 | 0.42 | 0.03 | 8.11 |
| ILMN_1243249 | 2810410A03Rik | 357.198 | 212.915 | 220.079 | 590.533 | 392.919 | 533.911 | 0.52 | 0.06 | 8.11 |
| ILMN_2733887 | Mknk2 | 233.221 | 162.634 | 149.901 | 445.245 | 339.737 | 451.189 | 0.44 | 0.06 | 8.11 |
| ILMN_1239673 | LOC672215 | 38.9745 | 56.0613 | 42.9084 | 70.3618 | 107.621 | 83.5746 | 0.53 | 0.01 | 8.11 |
| ILMN_2963704 | Sfxn3 | 923.072 | 763.426 | 796.198 | 1214.35 | 1179.22 | 1320.67 | 0.67 | 0.05 | 8.11 |
| ILMN_2513570 | AW 123240 | 70.483 | 82.906 | 100.857 | 106.085 | 131.761 | 160.851 | 0.64 | 0.01 | 8.11 |
| ILMN_2670375 | Itm2b | 521.35 | 428.866 | 444.289 | 693.644 | 733.971 | 731.408 | 0.65 | 0.05 | 8.11 |
| ILMN_1219447 | Zmym3 | 96.3626 | 95.5384 | 112.893 | 150.021 | 187.095 | 200.265 | 0.57 | 0.04 | 8.11 |
| ILMN_2761918 | Mmrn2 | 832.829 | 513.691 | 565.535 | 1176.27 | 1137.1 | 1117.52 | 0.56 | 0.08 | 8.11 |
| ILMN_2789562 | P4ha2 | 118.522 | 161.927 | 292.11 | 399.875 | 381.449 | 449.139 | 0.46 | 0.10 | 8.11 |
| ILMN_2493521 | Tnrc6c | 104.466 | 79.4961 | 75.2412 | 172.817 | 127.106 | 117.736 | 0.62 | 0.01 | 8.11 |
| ILMN_2728538 | Exdl2 | 44.8324 | 54.019 | 62.6551 | 81.9711 | 82.4037 | 86.0639 | 0.64 | 0.05 | 8.11 |
| ILMN_2658407 | Elmo1 | 71.0764 | 87.6985 | 118.356 | 137.513 | 140.496 | 157.305 | 0.63 | 0.07 | 8.11 |
| ILMN_1223049 | Tns1 | 200.969 | 141.404 | 106.994 | 294.114 | 299.497 | 269.623 | 0.52 | 0.09 | 8.11 |
| ILMN_2855515 | Pnpla6 | 117.852 | 129.658 | 98.6394 | 192.188 | 178.238 | 183.746 | 0.63 | 0.06 | 8.11 |
| ILMN_2913222 | Efcab4a | 140.581 | 122.414 | 150.052 | 233.506 | 271.492 | 317.274 | 0.51 | 0.05 | 8.11 |
| ILMN_2577853 | Rw1-pending | 51.684 | 62.4702 | 45.4828 | 87.8284 | 84.5065 | 76.4736 | 0.64 | 0.05 | 8.11 |
| ILMN_1224866 | Ptgs1 | 51.6725 | 47.1747 | 45.0369 | 93.0616 | 83.8402 | 104.383 | 0.52 | 0.04 | 8.36 |
| ILMN_2933431 | Pps | 41.1925 | 37.794 | 45.5791 | 60.2271 | 65.7182 | 76.1147 | 0.62 | 0.03 | 8.36 |
| ILMN_2750053 | Ptprj | 373.419 | 266.465 | 251.024 | 794.088 | 808.417 | 1007.42 | 0.35 | 0.06 | 8.36 |
| ILMN_2641228 | Hspa12b | 271.621 | 215.554 | 218.699 | 489.109 | 443.208 | 577.363 | 0.47 | 0.05 | 8.36 |
| ILMN_2947526 | Ecm1 | 166.998 | 102.742 | 128.992 | 238.573 | 209.463 | 258.307 | 0.56 | 0.07 | 8.36 |
| ILMN_2757019 | She | 201.575 | 205.773 | 198.377 | 278.935 | 307.14 | 335.692 | 0.66 | 0.04 | 8.36 |
| ILMN_2509327 | Wipf3 | 40.1571 | 38.7539 | 34.6308 | 62.1871 | 60.3744 | 66.7522 | 0.60 | 0.04 | 8.36 |
| ILMN_2633897 | Pde6d | 51.1288 | 51.3888 | 55.3458 | 83.1158 | 86.9641 | 76.8633 | 0.64 | 0.04 | 8.36 |
| ILMN_2615035 | Mgst3 | 182.197 | 234.446 | 175.219 | 285.806 | 419.386 | 356.011 | 0.56 | 0.04 | 8.36 |
| ILMN_3126277 | Palmd | 498.667 | 563.001 | 504.87 | 813.914 | 869.588 | 1010.49 | 0.59 | 0.04 | 8.36 |
| ILMN_2743320 | Myst4 | 67.7135 | 56.8771 | 54.8654 | 111.326 | 82.5011 | 93.5353 | 0.63 | 0.03 | 8.36 |
| ILMN_2592823 | Cdc42ep5 | 94.1107 | 66.2064 | 50.5887 | 155.469 | 105.431 | 90.3429 | 0.60 | 0.02 | 8.36 |
| ILMN_1241293 | Cldn5 | 842.223 | 502.602 | 537.82 | 1549.02 | 1292.13 | 1759.24 | 0.41 | 0.07 | 8.36 |
| ILMN_2727687 | Numb | 52.3817 | 86.2716 | 98.0765 | 105.144 | 123.575 | 130.094 | 0.65 | 0.08 | 8.36 |
| ILMN_3111877 | Rbms2 | 442.828 | 318.448 | 305.33 | 577.363 | 548.363 | 554.129 | 0.63 | 0.07 | 8.36 |
| ILMN_2727309 | LOC100044204 | 125.856 | 57.9598 | 43.5082 | 256.167 | 131.843 | 135.526 | 0.42 | 0.05 | 8.36 |
| ILMN_3159275 | Ahnak | 349.427 | 201.707 | 230.212 | 467.7 | 326.305 | 427.005 | 0.63 | 0.06 | 8.36 |
| ILMN_2877069 | Tspo | 157.145 | 164.622 | 154.671 | 250.749 | 309.742 | 241.544 | 0.60 | 0.03 | 8.36 |
| ILMN_2678477 | Gja5 | 74.3285 | 72.6458 | 56.9453 | 134.907 | 150.052 | 164.073 | 0.46 | 0.06 | 8.36 |
| ILMN_3052632 | Epas1 | 1613.82 | 1001.67 | 864.305 | 2304.22 | 2020.1 | 2174.36 | 0.53 | 0.09 | 8.36 |
| ILMN_2592881 | Jam2 | 71.4685 | 66.0291 | 56.2363 | 117.134 | 114.911 | 130.702 | 0.54 | 0.06 | 8.36 |
| ILMN_3132223 | C630004H02Rik | 195.894 | 129.579 | 158.008 | 291.764 | 257.511 | 228.301 | 0.62 | 0.06 | 8.36 |
| ILMN_2466164 | Wfdc1 | 31.943 | 35.1659 | 34.2332 | 75.9107 | 75.1312 | 59.7646 | 0.49 | 0.04 | 8.36 |
| ILMN_3115796 | Cd40 | 32.134 | 105.198 | 63.9726 | 116.069 | 157.662 | 116.921 | 0.50 | 0.12 | 8.36 |
| ILMN_2720083 | Bace2 | 138.364 | 104.127 | 136.076 | 242.001 | 299.277 | 303.036 | 0.46 | 0.06 | 8.36 |
| ILMN_2705128 | Muted | 364.511 | 371.22 | 449.541 | 552.21 | 656.598 | 612.669 | 0.65 | 0.05 | 8.36 |
| ILMN_1220234 | Serpina1e | 39.344 | 35.033 | 39.7792 | 83.5948 | 115.575 | 108.964 | 0.38 | 0.05 | 8.36 |
| ILMN_2599008 | Kirrel3 | 52.7322 | 38.3915 | 38.4879 | 91.0124 | 64.9092 | 84.7187 | 0.54 | 0.04 | 8.36 |
| ILMN_2588295 | Rarres2 | 31.8438 | 55.6936 | 36.7392 | 81.0295 | 115.357 | 70.0633 | 0.47 | 0.04 | 8.36 |
| ILMN_2881681 | Tnrc6c | 189.907 | 114.468 | 129.592 | 391.19 | 279.551 | 235.579 | 0.48 | 0.04 | 8.36 |
| ILMN_2865335 | Krt80 | 316.475 | 196.959 | 141.215 | 470.301 | 382.959 | 417.299 | 0.51 | 0.10 | 8.36 |
| ILMN_2432550 | Trib2 | 126.182 | 63.1931 | 70.2625 | 326.405 | 176.977 | 202.624 | 0.36 | 0.01 | 8.36 |
| ILMN_2756665 | Cbr2 | 53.5133 | 115.954 | 74.4169 | 150.439 | 183.243 | 199.513 | 0.45 | 0.09 | 8.36 |
| ILMN_2736379 | Nfia | 421.636 | 355.867 | 235.579 | 588.515 | 468.921 | 449.797 | 0.67 | 0.07 | 8.36 |
| ILMN_2572849 | C920007D24Rik | 44.6002 | 57.6022 | 52.6758 | 76.0338 | 110.563 | 107.761 | 0.53 | 0.03 | 8.36 |
| ILMN_1225988 | Zdhhc3 | 28.6758 | 42.7422 | 73.3151 | 83.7998 | 103.178 | 107.044 | 0.48 | 0.10 | 8.36 |
| ILMN_2862179 | Ccl11 | 32.7051 | 30.762 | 32.7544 | 55.4121 | 47.2542 | 47.8454 | 0.64 | 0.03 | 8.36 |
| ILMN_1257077 | Jag1 | 81.2723 | 72.5674 | 72.5891 | 113.421 | 112.962 | 128.205 | 0.64 | 0.04 | 8.46 |
| ILMN_2799596 | Al662250 | 60.6924 | 87.4522 | 58.3217 | 112.918 | 123.184 | 123.184 | 0.57 | 0.07 | 8.46 |
| ILMN_3139693 | Rab11fip5 | 238.322 | 181.183 | 257.913 | 326.305 | 334.612 | 358.203 | 0.66 | 0.06 | 8.46 |
| ILMN_2991660 | Mif4gd | 63.2658 | 53.2608 | 51.634 | 94.7868 | 89.6643 | 72.7436 | 0.66 | 0.03 | 8.46 |
| ILMN_3079421 | Pde6d | 72.8345 | 89.553 | 76.3914 | 144.693 | 128.743 | 134.877 | 0.59 | 0.06 | 8.46 |
| ILMN_2765032 | Kcnn4 | 42.161 | 43.3855 | 43.2686 | 68.959 | 83.8463 | 90.9059 | 0.53 | 0.04 | 8.46 |

Table A2. -Continued

| Gene_ID | Gene | LCA1 | LCA2 | LCA3 | RCA1 | RCA2 | RCA3 | LCA/RCA |  | q-value\% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | signal | signal | signal | signal | signal | signal | ratio | SEM |  |
| ILMN_2622089 | 5430432N15Rik | 292.288 | 377.416 | 350.853 | 673.927 | 584.801 | 741.828 | 0.52 | 0.07 | 8.46 |
| ILMN_2868457 | Lrrc1 | 30.4015 | 44.1971 | 43.52 | 69.7624 | 77.6978 | 66.0829 | 0.55 | 0.06 | 8.46 |
| ILMN_2549903 | 6230401I02Rik | 424.33 | 447.474 | 551.141 | 788.6 | 752.523 | 737.73 | 0.63 | 0.06 | 8.46 |
| ILMN_2963700 | Sfxn3 | 514.465 | 415.733 | 420.048 | 681.141 | 740.801 | 699.822 | 0.64 | 0.06 | 8.46 |
| ILMN_1220360 | Unc13b | 306.803 | 147.945 | 199.844 | 441.338 | 386.378 | 458.732 | 0.50 | 0.10 | 8.46 |
| ILMN_1258788 | Snx27 | 87.4803 | 97.8215 | 97.2554 | 130.203 | 177.528 | 162.064 | 0.61 | 0.04 | 8.46 |
| ILMN_2913166 | Serping1 | 221.237 | 90.8912 | 101.459 | 317.398 | 256.531 | 205.41 | 0.52 | 0.10 | 8.46 |
| ILMN_3129160 | Epas1 | 268.311 | 207.224 | 148.553 | 403.919 | 367.087 | 392.919 | 0.54 | 0.08 | 8.46 |
| ILMN_2803249 | Inmt | 29.4014 | 27.4922 | 29.0673 | 67.8443 | 61.8051 | 50.9721 | 0.48 | 0.04 | 8.46 |
| ILMN_2618148 | C330008K14Rik | 40.7916 | 54.0309 | 52.6678 | 94.1524 | 83.3205 | 97.8215 | 0.54 | 0.06 | 8.46 |
| ILMN_2495363 | Wasf2 | 121.426 | 96.8233 | 81.3992 | 194.621 | 137.447 | 155.714 | 0.62 | 0.05 | 8.46 |
| ILMN_2722864 | Ncam1 | 59.7314 | 39.6274 | 37.8231 | 99.9707 | 98.385 | 114.019 | 0.44 | 0.08 | 8.46 |
| ILMN_2872058 | Ctsh | 544.057 | 486.774 | 372.676 | 796.198 | 832.829 | 865.29 | 0.57 | 0.07 | 8.65 |
| ILMN_2877029 | Cyt11 | 872.013 | 510.394 | 509.037 | 1368.43 | 1338.51 | 1524.36 | 0.45 | 0.09 | 8.65 |
| ILMN_2745876 | BC020535 | 329.37 | 207.778 | 148.101 | 496.633 | 474.132 | 487.371 | 0.47 | 0.10 | 8.65 |
| ILMN_1225570 | Serpina1d | 29.0837 | 30.3817 | 34.1942 | 72.9833 | 57.8335 | 61.5255 | 0.49 | 0.05 | 8.65 |
| ILMN_2627179 | Ell3 | 32.2903 | 72.5006 | 82.3609 | 63.2503 | 104.714 | 100.838 | 0.67 | 0.09 | 8.65 |
| ILMN_3163577 | Scn3b | 70.2625 | 36.8987 | 42.4418 | 117.436 | 120.904 | 134.089 | 0.41 | 0.10 | 8.65 |
| ILMN_2908133 | Gja5 | 658.524 | 494 | 473.41 | 820.708 | 825.317 | 761.05 | 0.67 | 0.06 | 8.65 |
| ILMN_3150811 | Tsc22d3 | 283.414 | 203.971 | 167.529 | 391.439 | 419.129 | 370.712 | 0.55 | 0.09 | 8.65 |
| ILMN_1242286 | Ermp1 | 71.0934 | 116.357 | 85.7468 | 112.943 | 155.042 | 152.14 | 0.65 | 0.05 | 8.65 |
| ILMN_1238936 | D130063P19Rik | 46.7383 | 40.8882 | 47.1953 | 69.0167 | 67.9597 | 85.8136 | 0.61 | 0.04 | 8.65 |
| ILMN_3112526 | Ldb2 | 66.8084 | 69.3189 | 81.2723 | 117.148 | 146.556 | 180.184 | 0.50 | 0.04 | 8.65 |
| ILMN_1233340 | Pkp4 | 681.517 | 589.246 | 550.781 | 932.625 | 873.975 | 1013.33 | 0.65 | 0.06 | 8.65 |
| ILMN_2454786 | Tpen1 | 151.871 | 93.1508 | 91.3389 | 218.634 | 219.409 | 176.434 | 0.55 | 0.08 | 8.65 |
| ILMN_3163020 | Klc1 | 133.391 | 100.303 | 105.02 | 171.278 | 172.876 | 158.988 | 0.67 | 0.06 | 8.65 |
| ILMN_1232123 | Traf3ip2 | 51.1805 | 47.9913 | 49.6801 | 77.2158 | 77.9778 | 94.7022 | 0.60 | 0.04 | 8.65 |
| ILMN_1231520 | Trpv4 | 88.4863 | 66.2779 | 61.6668 | 141.914 | 121.081 | 152.958 | 0.52 | 0.06 | 8.65 |
| ILMN_2449620 | 5830427D02Rik | 37.9178 | 41.6011 | 31.6109 | 56.5784 | 72.4921 | 52.5811 | 0.62 | 0.03 | 8.65 |
| ILMN_2740628 | Ndrg3 | 37.3127 | 38.5466 | 43.304 | 75.1993 | 64.4612 | 65.2556 | 0.59 | 0.05 | 8.65 |
| ILMN_2931918 | 4432416J03Rik | 38.8503 | 36.6663 | 38.3514 | 63.8012 | 60.5082 | 77.5385 | 0.57 | 0.04 | 8.65 |
| ILMN_2834370 | Cutc | 123.078 | 113.35 | 106.029 | 185.206 | 162.097 | 197.642 | 0.63 | 0.05 | 8.65 |
| ILMN_2610442 | Wscd1 | 146.262 | 151.656 | 70.179 | 271.621 | 227.266 | 140.91 | 0.57 | 0.05 | 8.65 |
| ILMN_2663211 | Stbd1 | 137.695 | 84.2408 | 73.0131 | 178.031 | 147.945 | 153.32 | 0.61 | 0.09 | 8.65 |
| ILMN_2688236 | Atp2a3 | 4083.11 | 3028.05 | 2825.87 | 5196.2 | 4906.71 | 5196.2 | 0.65 | 0.07 | 8.65 |
| ILMN_1212703 | Kras | 153.355 | 215.024 | 240.758 | 304.499 | 292.288 | 343.464 | 0.65 | 0.07 | 8.65 |
| ILMN_2870522 | Plekha6 | 62.1625 | 100.997 | 51.8263 | 368.961 | 249.825 | 343.276 | 0.24 | 0.08 | 8.65 |
| ILMN_2790839 | Jam2 | 276.563 | 154.216 | 145.886 | 434.397 | 404.776 | 475.933 | 0.44 | 0.10 | 8.65 |
| ILMN_2621038 | Hoxa7 | 42.0135 | 66.9511 | 66.9422 | 63.7045 | 107.24 | 105.47 | 0.64 | 0.01 | 8.65 |
| ILMN_2745367 | Myo1c | 76.7253 | 95.945 | 141.976 | 145.352 | 130.394 | 201.207 | 0.66 | 0.06 | 8.65 |
| ILMN_1253304 | Stmn2 | 49.4318 | 56.2363 | 47.9572 | 134.21 | 206.725 | 225.925 | 0.28 | 0.05 | 9.10 |
| ILMN_2473692 | 1110059G02Rik | 57.9107 | 56.6484 | 51.2859 | 79.1824 | 88.9048 | 91.6038 | 0.64 | 0.05 | 9.10 |
| ILMN_2923607 | Phlda3 | 117.163 | 144.375 | 121.826 | 234.21 | 210.536 | 259.773 | 0.55 | 0.07 | 9.10 |
| ILMN_1238331 | Rom1 | 155.714 | 129.458 | 122.095 | 253.353 | 290.506 | 327.602 | 0.48 | 0.07 | 9.10 |
| ILMN_1250469 | Bcl9 | 640.55 | 599.17 | 494.447 | 1066.43 | 1231.62 | 1387.11 | 0.48 | 0.07 | 9.10 |
| ILMN_2507400 | 9330180L10Rik | 84.7187 | 85.897 | 86.9195 | 142.571 | 119.75 | 155.22 | 0.62 | 0.05 | 9.10 |
| ILMN_3161897 | Dync1li2 | 123.393 | 126.126 | 136.104 | 195.082 | 184.662 | 247.673 | 0.62 | 0.04 | 9.10 |
| ILMN_2686087 | Cutc | 53.3624 | 58.8209 | 75.3768 | 108.356 | 90.7635 | 139.828 | 0.56 | 0.05 | 9.10 |
| ILMN_1229828 | Adamts10 | 50.3671 | 46.1116 | 35.9946 | 70.8726 | 85.0851 | 72.5674 | 0.58 | 0.07 | 9.10 |
| ILMN_2700408 | MgII | 40.2028 | 42.4966 | 37.1282 | 76.9833 | 79.917 | 100.429 | 0.47 | 0.05 | 9.10 |
| ILMN_2624451 | 4933407C03Rik | 244.182 | 167.616 | 135.02 | 359.109 | 386.96 | 381.449 | 0.49 | 0.10 | 9.10 |
| ILMN_2474515 | 9430020K01Rik | 103.424 | 90.278 | 72.5598 | 131.218 | 135.37 | 128.458 | 0.67 | 0.06 | 9.10 |
| ILMN_1259753 | Sp4 | 50.6371 | 55.206 | 37.5402 | 73.3093 | 84.6086 | 79.7982 | 0.60 | 0.07 | 9.10 |
| ILMN_2727481 | Palmd | 336.989 | 385.54 | 327.944 | 603.342 | 548.933 | 682.097 | 0.58 | 0.06 | 9.10 |
| ILMN_2597769 | Igf2 | 75.7692 | 79.9773 | 74.05 | 342.482 | 211.942 | 246.143 | 0.30 | 0.05 | 9.10 |
| ILMN_2697760 | Nkx2-3 | 77.9397 | 81.6723 | 110.832 | 125.057 | 169.488 | 164.891 | 0.59 | 0.06 | 9.10 |
| ILMN_2622354 | Arfl4 | 40.3359 | 35.7265 | 42.8769 | 80.0266 | 56.3296 | 73.1443 | 0.57 | 0.04 | 9.10 |
| ILMN_2838317 | Pqlc3 | 34.9174 | 44.4537 | 43.4826 | 75.8462 | 65.2609 | 77.7796 | 0.57 | 0.06 | 9.10 |
| ILMN_2604029 | KIf2 | 58.2625 | 38.0564 | 43.8004 | 144.138 | 205.143 | 146.915 | 0.30 | 0.06 | 9.10 |
| ILMN_1246346 | B230107H12Rik | 82.2304 | 66.1079 | 54.0231 | 105.721 | 112.744 | 96.9221 | 0.64 | 0.07 | 9.10 |
| ILMN_1222365 | 2610200014Rik | 65.5176 | 55.4662 | 47.6255 | 102.801 | 100.303 | 70.0863 | 0.62 | 0.04 | 9.10 |
| ILMN_1251524 | Them4 | 42.7651 | 56.1845 | 62.6502 | 69.3859 | 92.0097 | 81.4395 | 0.67 | 0.05 | 9.10 |
| ILMN_2993109 | Ddit4 | 922.125 | 499.199 | 581.594 | 1117.52 | 912.268 | 1003.24 | 0.65 | 0.09 | 9.10 |
| ILMN_2646166 | Ndrl | 247.3 | 151.787 | 269.623 | 318.341 | 303.324 | 379.264 | 0.66 | 0.08 | 9.10 |
| ILMN_2729153 | Nos3 | 119.927 | 139.333 | 86.6722 | 205.941 | 262.556 | 267.257 | 0.48 | 0.08 | 9.45 |
| ILMN_1237671 | Setmar | 31.0571 | 72.4921 | 60.8733 | 88.7598 | 100.6 | 105.764 | 0.55 | 0.11 | 9.45 |
| ILMN_2634689 | Itgb4 | 134.351 | 77.9847 | 72.1687 | 212.051 | 200.796 | 239.87 | 0.44 | 0.10 | 9.45 |
| ILMN_1217061 | Casp9 | 170.256 | 158.484 | 187.693 | 225.646 | 274.673 | 302.527 | 0.65 | 0.05 | 9.45 |

Table A2. -Continued

| Gene_ID | Gene | LCA1 | LCA2 | LCA3 | RCA1 | RCA2 | RCA3 | LCA/RCA |  | q-value\% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | signal | signal | signal | signal | signal | signal | ratio | SEM |  |
| ILMN_2833781 | Pwwp2b | 91.1142 | 80.24 | 83.0716 | 139.828 | 158.284 | 187.064 | 0.53 | 0.06 | 9.45 |
| ILMN_2857957 | Mgll | 39.4813 | 41.585 | 37.6306 | 65.7594 | 86.7752 | 92.0097 | 0.50 | 0.06 | 9.45 |
| ILMN_1232928 | Timp3 | 410.301 | 495.592 | 463.428 | 882.937 | 705.192 | 882.036 | 0.56 | 0.07 | 9.45 |
| ILMN_2622500 | Zbtb7c | 40.4978 | 43.1366 | 62.7662 | 269.948 | 166.341 | 339.932 | 0.20 | 0.03 | 9.45 |
| ILMN_1249637 | Peg13 | 73.4438 | 39.8558 | 40.1235 | 93.3435 | 75.1746 | 62.6477 | 0.65 | 0.07 | 9.45 |
| ILMN_2765047 | Chrd | 39.5724 | 37.3638 | 36.3189 | 76.4122 | 110.281 | 113.999 | 0.39 | 0.06 | 9.45 |
| ILMN_1217606 | 1500005K14Rik | 37.6023 | 54.0652 | 75.9536 | 132.689 | 140.354 | 120.098 | 0.43 | 0.10 | 9.45 |
| ILMN_2683095 | Ap1g2 | 161.527 | 207.089 | 168.476 | 273.399 | 311.432 | 220.177 | 0.67 | 0.05 | 9.45 |
| ILMN_2498731 | E030024M20Rik | 112.001 | 87.8961 | 90.4651 | 322.372 | 206.583 | 358.107 | 0.34 | 0.05 | 9.45 |
| ILMN_1232295 | Sort1 | 171.734 | 208.772 | 116.669 | 240.758 | 260.586 | 222.395 | 0.68 | 0.08 | 9.45 |
| ILMN_2614889 | B3gnt8 | 95.0234 | 102.037 | 101.684 | 436.16 | 252.441 | 362.178 | 0.30 | 0.05 | 9.45 |
| ILMN_2602185 | 9/9/2009 | 117.453 | 124.175 | 176.172 | 229.783 | 233.697 | 379.854 | 0.50 | 0.02 | 9.45 |
| ILMN_2661299 | Pmp22 | 44.1811 | 36.6886 | 40.3481 | 62.54 | 64.7739 | 56.354 | 0.66 | 0.05 | 9.45 |
| ILMN_2504268 | Gcap26 | 32.6939 | 35.1222 | 38.4518 | 123.988 | 197.394 | 123.881 | 0.25 | 0.04 | 9.45 |
| ILMN_2620233 | Fmo5 | 63.5324 | 32.9711 | 33.755 | 80.7574 | 66.9208 | 66.7679 | 0.59 | 0.10 | 9.45 |
| ILMN_2876579 | Ubxd1 | 161.466 | 125.073 | 111.58 | 230.049 | 204.198 | 246.498 | 0.59 | 0.07 | 9.45 |
| ILMN_3144575 | Itgb4 | 205.627 | 157.832 | 108.067 | 306.426 | 383.213 | 329.111 | 0.47 | 0.10 | 9.45 |
| ILMN_2755424 | Bcorl1 | 51.0598 | 64.9965 | 109.709 | 89.9531 | 105.528 | 180.982 | 0.60 | 0.01 | 9.45 |
| ILMN_2880906 | Pdlim2 | 74.2399 | 78.1829 | 87.5498 | 274.469 | 201.897 | 367.928 | 0.30 | 0.05 | 9.45 |
| ILMN_2798993 | Nr 1 d 2 | 228.653 | 136.121 | 142.541 | 272.053 | 228.301 | 236.689 | 0.68 | 0.08 | 9.45 |
| ILMN_2702547 | 4930519N16Rik | 35.6221 | 33.5482 | 31.201 | 65.5301 | 98.8013 | 82.9635 | 0.42 | 0.06 | 9.45 |
| ILMN_2759563 | 2410008K03Rik | 52.6433 | 77.8949 | 68.6875 | 103.753 | 114.783 | 145.475 | 0.55 | 0.06 | 9.45 |
| ILMN_2583163 | D430023I21Rik | 67.3631 | 49.3736 | 59.3074 | 92.4817 | 97.8458 | 90.0475 | 0.63 | 0.07 | 9.45 |
| ILMN_2674367 | Agrn | 267.522 | 165.156 | 208.09 | 390.656 | 375.927 | 493.489 | 0.52 | 0.08 | 9.45 |
| ILMN_3138157 | Arl6ip2 | 57.947 | 33.4486 | 34.9759 | 104.205 | 55.4453 | 69.9793 | 0.55 | 0.03 | 9.92 |
| ILMN_2615557 | Dab2ip | 469.35 | 537.658 | 403.059 | 780.909 | 692.179 | 769.706 | 0.63 | 0.07 | 9.92 |
| ILMN_1238479 | Mgst3 | 85.2191 | 97.2455 | 67.7363 | 110.046 | 140.652 | 121.577 | 0.67 | 0.06 | 9.92 |
| ILMN_1228942 | Cd59a | 135.902 | 168.823 | 180.93 | 367.928 | 274.064 | 423.744 | 0.47 | 0.07 | 9.92 |
| ILMN_2846812 | Sp100 | 138.5 | 96.3988 | 94.1524 | 261.965 | 157.43 | 167.484 | 0.57 | 0.02 | 9.92 |
| ILMN_2664224 | Ephx1 | 205.941 | 115.592 | 116.265 | 277.548 | 245.235 | 283.099 | 0.54 | 0.10 | 9.92 |
| ILMN_2419858 | E230020D15Rik | 81.8134 | 51.9907 | 44.456 | 101.794 | 94.213 | 83.0312 | 0.63 | 0.09 | 9.92 |
| ILMN_2416876 | Gm967 | 81.6857 | 60.0294 | 56.7679 | 125.607 | 147.447 | 157.606 | 0.47 | 0.09 | 9.92 |
| ILMN_2913089 | Brd9 | 91.6038 | 110.439 | 129.057 | 170.062 | 161.466 | 166.378 | 0.67 | 0.07 | 9.92 |
| ILMN_2741464 | Fgd5 | 61.8191 | 97.8936 | 70.3934 | 111.062 | 165.498 | 175.739 | 0.52 | 0.06 | 9.92 |
| ILMN_2702997 | Thap7 | 39.0791 | 44.4453 | 54.4245 | 123.286 | 95.008 | 96.1765 | 0.45 | 0.07 | 9.92 |
| ILMN_1242571 | Pkn3 | 561.836 | 461.474 | 374.85 | 762.104 | 884.251 | 861.78 | 0.56 | 0.09 | 9.92 |
| ILMN_1227126 | Ppp2r3a | 38.6953 | 42.6033 | 34.5624 | 57.6406 | 57.293 | 62.445 | 0.66 | 0.06 | 9.92 |
| ILMN_2790188 | 4921533L14Rik | 116.247 | 90.4346 | 93.7405 | 222.43 | 204.383 | 302.815 | 0.42 | 0.06 | 9.92 |
| ILMN_2742627 | Six2 | 82.4274 | 57.474 | 118.55 | 139.091 | 130.835 | 150.836 | 0.61 | 0.10 | 9.92 |
| ILMN_1256136 | Nme7 | 52.9252 | 38.1628 | 45.2995 | 75.9807 | 70.4637 | 93.1356 | 0.57 | 0.06 | 9.92 |
| ILMN_1222004 | Rbbp9 | 43.8743 | 37.2039 | 39.9486 | 82.1031 | 56.425 | 81.2136 | 0.56 | 0.05 | 9.92 |
| ILMN_2418725 | Zdhhc3 | 35.5653 | 40.9597 | 72.5309 | 72.6642 | 88.8714 | 94.4003 | 0.57 | 0.10 | 9.92 |
| ILMN_2706268 | Scara3 | 67.0842 | 85.0897 | 102.554 | 189.608 | 154.716 | 163.475 | 0.51 | 0.08 | 9.92 |
| ILMN_1225835 | Mfap5 | 133.695 | 111.675 | 86.8026 | 295.475 | 265.168 | 389.609 | 0.37 | 0.07 | 9.92 |

## APPENDIX B

miRNA expression profiles in response to disturb flow in vivo

Table B1. miRNA expression profiles in mouse ligated carotid endothelium (LCA) and controlateral right carotid endothelium (RCA) at 12 hr post-ligation

|  |  | LCA1 | LCA2 | LCA3 | RCA1 | RCA2 | RCA3 | LCA/RCA |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Illumina_ID | NAME | signal | signal | signal | signal | signal | signal | ratio | SEM | p-value |
| ILMN_3167971 | mmu-let-7a | 22202.67 | 21782.33 | 21667.17 | 22315.71 | 22315.71 | 22161.04 | 0.98 | 0.01 | 0.105 |
| ILMN_3167970 | mmu-let-7b | 23433.92 | 23433.92 | 23433.92 | 23680.80 | 23433.92 | 23433.92 | 1.00 | 0.00 | 0.423 |
| ILMN_3169089 | mmu-let-7b* | 800.62 | 372.29 | 415.58 | 476.38 | 505.71 | 999.71 | 0.94 | 0.38 | 0.667 |
| ILMN_3168513 | mmu-let-7c | 21667.58 | 22202.67 | 22428.75 | 22315.71 | 22315.71 | 22315.71 | 0.99 | 0.01 | 0.439 |
| ILMN_3169088 | mmu-let-7c-2*,mmu-let-7a* | 3713.96 | 5585.17 | 4940.75 | 5195.25 | 5378.71 | 6990.17 | 0.82 | 0.11 | 0.244 |
| ILMN_3167551 | mmu-let-7d | 20752.09 | 20992.67 | 21373.50 | 21286.75 | 21286.75 | 21556.58 | 0.98 | 0.00 | 0.083 |
| ILMN_3167347 | mmu-let-7d* | 12550.09 | 13339.00 | 14293.80 | 16613.34 | 15355.88 | 16048.71 | 0.84 | 0.04 | 0.070 |
| ILMN_3168463 | mmu-let-7e | 17060.42 | 18162.42 | 17927.75 | 19224.38 | 19306.34 | 18942.21 | 0.92 | 0.02 | 0.058 |
| ILMN_3167189 | mmu-let-7f | 19910.46 | 19624.21 | 18540.67 | 19762.92 | 20035.00 | 20031.88 | 0.97 | 0.02 | 0.348 |
| ILMN_3168365 | mmu-let-7g | 17593.50 | 18860.25 | 18923.05 | 18693.67 | 19516.46 | 19306.34 | 0.96 | 0.01 | 0.076 |
| ILMN_3169053 | mmu-let-79* | 3251.71 | 2225.83 | 2184.38 | 2635.33 | 2290.04 | 2481.46 | 1.03 | 0.11 | 0.786 |
| ILMN_3168316 | mmu-let-7i | 12142.67 | 14644.79 | 17273.88 | 12185.25 | 14490.50 | 14938.83 | 1.05 | 0.05 | 0.396 |
| ILMN_3168724 | mmu-let-7i* | 823.08 | 576.83 | 1026.17 | 686.92 | 814.83 | 1213.67 | 0.92 | 0.15 | 0.497 |
| ILMN_3167634 | mmu-miR-100 | 6498.04 | 7087.13 | 7157.13 | 6531.29 | 7087.13 | 6787.25 | 1.02 | 0.02 | 0.477 |
| ILMN_3168157 | mmu-miR-101a:9.1 | 5081.96 | 5902.71 | 5212.71 | 6002.96 | 6618.08 | 5262.96 | 0.91 | 0.04 | 0.166 |
| ILMN_3168940 | mmu-miR-101b | 1655.79 | 2433.42 | 410.50 | 1117.42 | 390.04 | 4382.00 | 2.60 | 1.86 | 0.822 |
| ILMN_3167027 | mmu-miR-103 | 9078.00 | 11072.67 | 13431.75 | 10784.96 | 11307.67 | 10569.67 | 1.03 | 0.13 | 0.841 |
| ILMN_3168930 | mmu-miR-106a | 2873.00 | 2162.75 | 1145.58 | 1364.83 | 1417.33 | 1711.92 | 1.43 | 0.42 | 0.451 |
| ILMN_3167574 | mmu-miR-106b | 1557.54 | 2764.00 | 1146.58 | 2431.25 | 1687.38 | 674.46 | 1.33 | 0.34 | 0.734 |
| ILMN_3167552 | mmu-miR-10a | 9409.67 | 10749.50 | 11307.67 | 10530.29 | 10609.83 | 12550.09 | 0.94 | 0.04 | 0.235 |
| ILMN_3169105 | mmu-miR-10a* | 985.25 | 699.29 | 695.96 | 639.96 | 993.71 | 774.13 | 1.05 | 0.25 | 0.966 |
| ILMN_3167276 | mmu-miR-10b | 4904.46 | 6208.42 | 5111.25 | 5759.54 | 5671.54 | 9675.00 | 0.82 | 0.16 | 0.397 |
| ILMN_3169068 | mmu-miR-10b* | 1519.13 | 1397.96 | 1263.29 | 1415.08 | 1486.83 | 1796.92 | 0.91 | 0.11 | 0.457 |
| ILMN_3169029 | mmu-miR-1186 | 15549.92 | 16122.04 | 13591.17 | 9716.46 | 11211.92 | 8856.92 | 1.52 | 0.05 | 0.004 |
| ILMN_3169030 | mmu-miR-1187 | 8143.17 | 7063.71 | 6879.71 | 8129.33 | 11386.92 | 5957.83 | 0.93 | 0.16 | 0.558 |
| ILMN_3169043 | mmu-miR-1192 | 2190.63 | 790.13 | 931.21 | 783.25 | 903.08 | 5986.96 | 1.28 | 0.79 | 0.586 |
| ILMN_3169049 | mmu-miR-1195 | 17897.21 | 17489.71 | 17519.63 | 17877.96 | 17742.04 | 16794.88 | 1.01 | 0.02 | 0.630 |
| ILMN_3169050 | mmu-miR-1196 | 6663.29 | 5410.33 | 6803.17 | 2331.50 | 6311.83 | 3935.00 | 1.81 | 0.58 | 0.310 |
| ILMN_3168794 | mmu-miR-1197 | 1332.08 | 1026.63 | 958.29 | 1081.00 | 1245.08 | 1705.67 | 0.87 | 0.20 | 0.496 |
| ILMN_3169052 | mmu-miR-1199 | 381.54 | 374.58 | 343.88 | 436.38 | 523.92 | 727.79 | 0.69 | 0.12 | 0.183 |
| ILMN_3167670 | mmu-miR-125a-5p | 19859.34 | 20501.34 | 20203.75 | 20372.50 | 20297.04 | 20752.09 | 0.99 | 0.01 | 0.364 |
| ILMN_3168389 | mmu-miR-125b-5p | 18717.67 | 18942.21 | 19224.38 | 19762.92 | 19683.67 | 19762.92 | 0.96 | 0.01 | 0.034 |
| ILMN_3167695 | mmu-miR-126-3p | 20028.09 | 21782.33 | 21401.50 | 21512.50 | 21893.33 | 21937.00 | 0.97 | 0.02 | 0.222 |
| ILMN_3168399 | mmu-miR-126-5p | 23927.67 | 23927.67 | 23927.67 | 23680.80 | 23927.67 | 23927.67 | 1.00 | 0.00 | 0.423 |
| ILMN_3167031 | mmu-miR-127 | 2276.04 | 3057.17 | 4612.92 | 3619.13 | 4444.63 | 2669.17 | 1.01 | 0.36 | 0.834 |
| ILMN_3168922 | mmu-miR-128 | 1381.25 | 2267.38 | 932.58 | 1005.54 | 1098.88 | 1411.75 | 1.37 | 0.40 | 0.533 |
| ILMN_3168183 | mmu-miR-129-5p | 7239.00 | 474.63 | 426.08 | 1447.83 | 1481.38 | 779.13 | 1.96 | 1.52 | 0.566 |
| ILMN_3168497 | mmu-miR-130a | 7613.17 | 9623.17 | 9987.38 | 8046.96 | 9514.75 | 7303.79 | 1.11 | 0.13 | 0.500 |
| ILMN_3168212 | mmu-miR-132 | 2618.17 | 1185.17 | 3966.54 | 2684.13 | 847.88 | 745.17 | 2.57 | 1.38 | 0.378 |
| ILMN_3168314 | mmu-miR-133a | 5287.13 | 4804.79 | 3454.17 | 1627.04 | 2172.54 | 2834.29 | 2.23 | 0.59 | 0.123 |
| ILMN_3167661 | mmu-miR-133a* | 710.08 | 755.92 | 501.58 | 626.54 | 728.42 | 782.04 | 0.94 | 0.15 | 0.667 |
| ILMN_3167874 | mmu-miR-135b | 1192.38 | 1030.42 | 915.13 | 1223.42 | 1224.04 | 1608.04 | 0.80 | 0.12 | 0.264 |
| ILMN_3167501 | mmu-miR-138 | 1069.33 | 1110.17 | 1613.25 | 886.54 | 1195.21 | 1093.87 | 1.20 | 0.16 | 0.360 |
| ILMN_3167136 | mmu-miR-140 | 6153.13 | 8524.88 | 8017.63 | 7366.79 | 8084.50 | 6450.58 | 1.04 | 0.12 | 0.774 |
| ILMN_3168302 | mmu-miR-140* | 10530.29 | 13087.38 | 12724.30 | 14799.08 | 12408.71 | 12885.42 | 0.92 | 0.10 | 0.499 |
| ILMN_3168509 | mmu-miR-142-5p | 368.33 | 377.33 | 350.29 | 423.08 | 512.88 | 624.75 | 0.72 | 0.09 | 0.137 |
| ILMN_3166958 | mmu-miR-143 | 8524.88 | 13643.17 | 14834.71 | 11860.67 | 14513.50 | 10530.29 | 1.02 | 0.20 | 0.990 |
| ILMN_3168030 | mmu-miR-144:9.1 | 3167.75 | 2654.67 | 2486.92 | 2881.79 | 2527.96 | 2752.88 | 1.02 | 0.06 | 0.794 |
| ILMN_3167456 | mmu-miR-145 | 11725.58 | 15839.21 | 14799.08 | 16495.71 | 16705.21 | 17273.88 | 0.84 | 0.07 | 0.140 |
| ILMN_3168483 | mmu-miR-146a | 1975.25 | 3765.46 | 774.92 | 1999.25 | 3631.25 | 1026.17 | 0.93 | 0.09 | 0.715 |
| ILMN_3169120 | mmu-miR-146b* | 405.79 | 681.13 | 768.04 | 421.96 | 505.71 | 641.79 | 1.17 | 0.11 | 0.239 |
| ILMN_3168105 | mmu-miR-148a | 3847.54 | 4486.00 | 4520.58 | 4916.63 | 4270.04 | 2250.46 | 1.28 | 0.37 | 0.675 |
| ILMN_3168426 | mmu-miR-148b | 4495.54 | 6662.38 | 5499.79 | 6067.67 | 3473.42 | 5548.96 | 1.22 | 0.36 | 0.745 |
| ILMN_3167902 | mmu-miR-149 | 3006.96 | 4403.79 | 2539.17 | 2558.04 | 1465.63 | 755.79 | 2.51 | 0.68 | 0.139 |
| ILMN_3167703 | mmu-miR-150 | 6626.88 | 7842.67 | 10569.67 | 9324.67 | 7267.58 | 12553.00 | 0.88 | 0.11 | 0.302 |
| ILMN_3168367 | mmu-miR-151-3p | 5839.50 | 8170.08 | 9324.67 | 9219.58 | 9219.58 | 10910.88 | 0.79 | 0.08 | 0.104 |
| ILMN_3168819 | mmu-miR-151-5p | 13722.80 | 16970.75 | 19224.38 | 16314.25 | 17335.13 | 18149.54 | 0.96 | 0.06 | 0.616 |
| ILMN_3168346 | mmu-miR-152 | 8043.75 | 10972.09 | 12185.25 | 9273.08 | 11386.92 | 9219.58 | 1.05 | 0.14 | 0.764 |
| ILMN_3167522 | mmu-miR-154 | 2544.88 | 2933.79 | 2897.54 | 1049.71 | 437.79 | 568.21 | 4.74 | 1.25 | 0.021 |
| ILMN_3166946 | mmu-miR-155 | 4551.38 | 2656.46 | 4908.25 | 7169.00 | 7698.29 | 7818.71 | 0.54 | 0.10 | 0.044 |
| ILMN_3167434 | mmu-miR-15a | 817.08 | 3195.75 | 2874.58 | 1155.38 | 2523.13 | 1163.54 | 1.48 | 0.52 | 0.368 |
| ILMN_3167060 | mmu-miR-15b | 12090.50 | 13630.05 | 14359.21 | 16970.75 | 13630.05 | 16406.00 | 0.86 | 0.08 | 0.244 |
| ILMN_3167989 | mmu-miR-16 | 13087.38 | 14644.79 | 15291.05 | 13935.55 | 13842.80 | 13630.05 | 1.04 | 0.05 | 0.541 |
| ILMN_3167785 | mmu-miR-17 | 6103.83 | 3205.46 | 6239.08 | 3736.04 | 4634.79 | 8436.67 | 1.02 | 0.31 | 0.794 |
| ILMN_3167127 | mmu-miR-181a | 7397.04 | 8397.25 | 9026.42 | 8426.71 | 7544.00 | 7087.13 | 1.09 | 0.11 | 0.568 |
| ILMN_3169069 | mmu-miR-181a-2* | 1074.83 | 1050.88 | 935.54 | 922.38 | 1170.46 | 1437.13 | 0.90 | 0.15 | 0.497 |
| ILMN_3168257 | mmu-miR-181b | 4039.83 | 5620.04 | 6417.33 | 4980.50 | 3714.42 | 4210.00 | 1.28 | 0.24 | 0.402 |
| ILMN_3168494 | mmu-miR-181d | 761.88 | 723.33 | 536.42 | 681.25 | 924.71 | 732.25 | 0.88 | 0.12 | 0.375 |
| ILMN_3167698 | mmu-miR-184 | 420.75 | 414.25 | 377.54 | 454.75 | 576.33 | 712.42 | 0.72 | 0.11 | 0.179 |
| ILMN_3167152 | mmu-miR-185 | 3336.38 | 3569.17 | 3745.88 | 3456.04 | 5645.46 | 5075.00 | 0.78 | 0.10 | 0.175 |
| ILMN_3168167 | mmu-miR-187 | 486.88 | 2498.29 | 2497.54 | 3243.83 | 674.33 | 1785.33 | 1.75 | 1.04 | 0.962 |
| ILMN_3167745 | mmu-miR-188-5p | 556.29 | 435.00 | 772.08 | 561.54 | 579.00 | 620.46 | 1.00 | 0.14 | 0.993 |
| ILMN_3168282 | mmu-miR-18a | 6138.21 | 5009.29 | 4112.79 | 4472.00 | 4213.42 | 3711.08 | 1.22 | 0.08 | 0.125 |
| ILMN_3169094 | mmu-miR-18a* | 1535.67 | 353.13 | 285.79 | 420.46 | 438.67 | 510.63 | 1.67 | 0.99 | 0.593 |
| ILMN_3167167 | mmu-miR-190 | 1030.25 | 1916.54 | 846.75 | 432.13 | 467.63 | 545.21 | 2.68 | 0.75 | 0.151 |
| ILMN_3167253 | mmu-miR-191 | 14513.50 | 16630.75 | 18426.17 | 17310.13 | 15355.88 | 19508.05 | 0.96 | 0.07 | 0.539 |
| ILMN_3169072 | mmu-miR-191* | 1686.67 | 1013.21 | 1148.71 | 1088.54 | 1162.04 | 1774.17 | 1.02 | 0.27 | 0.884 |
| ILMN_3167506 | mmu-miR-192 | 1750.17 | 3385.46 | 2410.75 | 765.92 | 902.75 | 5470.58 | 2.16 | 0.96 | 0.942 |
| ILMN_3168366 | mmu-miR-193 | 5844.42 | 5403.00 | 3685.50 | 2599.67 | 6098.58 | 8113.83 | 1.20 | 0.54 | 0.804 |
| ILMN_3169073 | mmu-miR-193* | 2384.63 | 4065.71 | 3635.92 | 1806.83 | 2655.33 | 1841.04 | 1.61 | 0.19 | 0.072 |
| ILMN_3168982 | mmu-miR-193b | 877.75 | 738.96 | 1441.92 | 2055.71 | 2408.92 | 1874.67 | 0.50 | 0.14 | 0.093 |
| ILMN_3167122 | mmu-miR-194 | 6182.42 | 5481.79 | 5555.54 | 5368.38 | 6009.46 | 4277.46 | 1.12 | 0.11 | 0.437 |
| ILMN_3167191 | mmu-miR-195 | 6852.08 | 7487.21 | 8299.67 | 7842.67 | 7397.04 | 7210.42 | 1.01 | 0.08 | 0.926 |
| ILMN_3168308 | mmu-miR-196b | 4058.54 | 6094.58 | 5234.21 | 5237.75 | 5196.17 | 5902.71 | 0.94 | 0.12 | 0.663 |
| ILMN_3168924 | mmu-miR-199a-3p,mmu-miR-199b | 14513.50 | 9273.08 | 6933.96 | 9712.79 | 8318.79 | 7895.42 | 1.16 | 0.18 | 0.445 |
| ILMN_3167976 | mmu-miR-199a-5p | 2653.83 | 5986.96 | 4322.00 | 4809.33 | 7302.00 | 5464.71 | 0.72 | 0.08 | 0.039 |
| ILMN_3167626 | mmu-miR-199b* | 2733.00 | 5932.42 | 3756.58 | 3569.17 | 1044.54 | 5620.04 | 2.37 | 1.65 | 0.762 |
| ILMN_3169106 | mmu-miR-19a* | 379.54 | 697.46 | 307.92 | 440.08 | 446.13 | 583.08 | 0.98 | 0.31 | 0.871 |
| ILMN_3167260 | mmu-miR-19b | 5237.75 | 5367.54 | 2840.54 | 2560.54 | 1628.96 | 1789.04 | 2.31 | 0.51 | 0.086 |
| ILMN_3168294 | mmu-miR-200b | 3862.79 | 3466.29 | 3406.92 | 4653.17 | 3827.54 | 3935.00 | 0.87 | 0.02 | 0.046 |
| ILMN_3169074 | mmu-miR-200b* | 976.67 | 829.38 | 713.21 | 859.00 | 1022.63 | 1274.50 | 0.84 | 0.17 | 0.392 |
| ILMN_3169108 | mmu-miR-200c* | 1376.71 | 741.29 | 692.75 | 827.17 | 869.21 | 1369.58 | 1.01 | 0.34 | 0.833 |
| ILMN_3168487 | mmu-miR-203 | 4656.54 | 3591.08 | 1653.50 | 4402.58 | 497.58 | 6757.96 | 2.84 | 2.20 | 0.830 |
| ILMN_3169015 | mmu-miR-208b | 688.54 | 596.88 | 559.54 | 643.92 | 807.17 | 962.83 | 0.80 | 0.14 | 0.281 |
| ILMN_3167510 | mmu-miR-20a | 3661.83 | 7576.46 | 5368.38 | 5985.17 | 3316.42 | 3278.13 | 1.51 | 0.49 | 0.560 |
| ILMN_3169095 | mmu-miR-20** | 15078.58 | 9026.42 | 6028.38 | 10455.75 | 9873.38 | 7899.17 | 1.04 | 0.21 | 0.783 |
| ILMN_3167333 | mmu-miR-20b | 895.46 | 859.17 | 622.33 | 847.67 | 977.00 | 1272.92 | 0.81 | 0.17 | 0.372 |
| ILMN_3167371 | mmu-miR-21 | 18162.42 | 19728.46 | 19267.92 | 21150.75 | 20853.67 | 20992.67 | 0.91 | 0.03 | 0.071 |
| ILMN_3167774 | mmu-miR-210 | 4146.71 | 4507.83 | 5531.54 | 5813.42 | 3567.58 | 6498.04 | 0.94 | 0.17 | 0.544 |
| ILMN_3168266 | mmu-miR-211 | 856.46 | 550.46 | 478.83 | 672.71 | 2329.83 | 947.54 | 0.67 | 0.31 | 0.355 |
| ILMN_3167761 | mmu-miR-212 | 16421.25 | 7544.25 | 6618.08 | 10317.63 | 8368.38 | 7544.00 | 1.12 | 0.23 | 0.596 |

Table B1. -Continued

|  |  | LCA1 | LCA2 | LCA3 | RCA1 | RCA2 | RCA3 | LCA/RCA |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Illumina_ID | NAME | signal | signal | signal | signal | signal | signal | ratio | SEM | p-value |
| ILMN_3167046 | mmu-miR-214 | 5171.13 | 5914.96 | 7197.58 | 5902.71 | 7950.75 | 5183.38 | 1.00 | 0.20 | 0.853 |
| ILMN_3167234 | mmu-miR-215 | 1395.33 | 1279.46 | 1091.67 | 1208.83 | 1400.08 | 1582.58 | 0.92 | 0.13 | 0.545 |
| ILMN_3167177 | mmu-miR-216b | 716.79 | 596.54 | 469.21 | 621.83 | 793.00 | 1011.00 | 0.79 | 0.20 | 0.364 |
| ILMN_3168380 | mmu-miR-218 | 1616.88 | 619.21 | 2655.33 | 2027.83 | 5158.17 | 5342.50 | 0.47 | 0.20 | 0.167 |
| ILMN_3169109 | mmu-miR-218-2* | 1009.21 | 437.79 | 375.96 | 491.00 | 586.42 | 739.38 | 1.10 | 0.48 | 0.995 |
| ILMN_3167523 | mmu-miR-219 | 830.13 | 709.04 | 795.71 | 778.17 | 922.71 | 1161.25 | 0.84 | 0.12 | 0.286 |
| ILMN_3167773 | mmu-miR-22 | 10516.96 | 12408.71 | 12096.79 | 12468.00 | 12550.09 | 11364.00 | 0.97 | 0.06 | 0.624 |
| ILMN_3169097 | mmu-miR-22* | 1624.92 | 3614.46 | 3375.83 | 2135.83 | 1148.25 | 3192.25 | 1.66 | 0.75 | 0.511 |
| ILMN_3167681 | mmu-miR-221 | 8397.25 | 3744.25 | 6153.13 | 4277.63 | 5359.13 | 2274.04 | 1.79 | 0.59 | 0.374 |
| ILMN_3167963 | mmu-miR-222 | 3991.13 | 6270.00 | 7169.00 | 7397.04 | 6375.63 | 5531.54 | 0.94 | 0.22 | 0.714 |
| ILMN_3166979 | mmu-miR-223 | 9409.67 | 10301.67 | 7738.83 | 4277.67 | 5907.00 | 7193.33 | 1.67 | 0.33 | 0.142 |
| ILMN_3168515 | mmu-miR-224 | 2501.92 | 3814.08 | 1380.13 | 6412.04 | 3481.21 | 4594.54 | 0.60 | 0.25 | 0.227 |
| ILMN_3168226 | mmu-miR-23a | 14490.50 | 15832.75 | 16959.00 | 19108.79 | 18428.05 | 18149.54 | 0.85 | 0.05 | 0.106 |
| ILMN_3167997 | mmu-miR-23b | 20444.34 | 19859.34 | 20268.67 | 21036.00 | 20630.17 | 20297.04 | 0.98 | 0.01 | 0.174 |
| ILMN_3168211 | mmu-miR-24 | 19224.38 | 19437.21 | 19612.88 | 20035.00 | 19632.05 | 19552.80 | 0.98 | 0.01 | 0.347 |
| ILMN_3169098 | mmu-miR-24-2* | 2821.08 | 1560.50 | 3605.67 | 5197.08 | 1263.13 | 4027.58 | 0.89 | 0.20 | 0.406 |
| ILMN_3168476 | mmu-miR-25 | 11307.67 | 11072.67 | 12754.96 | 11048.25 | 13220.33 | 13643.17 | 0.93 | 0.05 | 0.315 |
| ILMN_3168005 | mmu-miR-26a | 18942.21 | 20031.88 | 20031.88 | 20221.58 | 20297.04 | 20630.17 | 0.96 | 0.01 | 0.139 |
| ILMN_3167374 | mmu-miR-26b | 16705.21 | 17060.42 | 16620.50 | 17260.67 | 16585.38 | 17927.75 | 0.97 | 0.03 | 0.465 |
| ILMN_3168323 | mmu-miR-27a | 20031.88 | 21147.75 | 21036.00 | 21782.33 | 21556.58 | 21667.58 | 0.96 | 0.02 | 0.154 |
| ILMN_3169102 | mmu-miR-27a* | 825.88 | 741.67 | 533.46 | 823.25 | 867.67 | 1109.08 | 0.78 | 0.16 | 0.315 |
| ILMN_3168409 | mmu-miR-27b | 12885.42 | 15078.58 | 15466.67 | 15749.50 | 15466.67 | 15922.46 | 0.92 | 0.05 | 0.268 |
| ILMN_3167223 | mmu-miR-28 | 4512.25 | 3482.17 | 6039.29 | 5724.00 | 10376.21 | 10102.34 | 0.57 | 0.13 | 0.132 |
| ILMN_3169107 | mmu-miR-28* | 1343.38 | 1007.04 | 1306.83 | 1297.67 | 759.88 | 1234.58 | 1.14 | 0.09 | 0.194 |
| ILMN_3168514 | mmu-miR-291a-3p | 615.88 | 620.38 | 545.88 | 663.54 | 818.92 | 865.17 | 0.77 | 0.09 | 0.139 |
| ILMN_3167737 | mmu-miR-293 | 3314.42 | 2684.88 | 2392.96 | 3083.13 | 2539.17 | 2682.50 | 1.01 | 0.06 | 0.873 |
| ILMN_3169076 | mmu-miR-293* | 666.38 | 589.75 | 525.92 | 650.29 | 769.33 | 1057.54 | 0.76 | 0.15 | 0.285 |
| ILMN_3167176 | mmu-miR-295 | 469.79 | 495.17 | 637.08 | 670.42 | 768.83 | 1107.92 | 0.64 | 0.04 | 0.060 |
| ILMN_3169078 | mmu-miR-295* | 2188.58 | 1733.54 | 1389.88 | 1576.63 | 1512.50 | 3558.17 | 0.97 | 0.30 | 0.659 |
| ILMN_3168154 | mmu-miR-297a | 5583.21 | 4911.04 | 4569.75 | 4845.71 | 4589.63 | 4077.96 | 1.11 | 0.02 | 0.050 |
| ILMN_3168963 | mmu-miR-297c*,mmu-miR-297a*,mmu-miR-297b-3p | 389.04 | 719.71 | 2846.50 | 1451.13 | 4041.79 | 3652.75 | 0.41 | 0.19 | 0.163 |
| ILMN_3168928 | mmu-miR-299 | 907.50 | 795.33 | 619.54 | 814.08 | 922.04 | 1027.25 | 0.86 | 0.15 | 0.417 |
| ILMN_3167035 | mmu-miR-29a | 12237.42 | 14227.92 | 13684.08 | 15355.88 | 14300.75 | 15219.84 | 0.90 | 0.06 | 0.215 |
| ILMN_3169100 | mmu-miR-29a* | 1452.92 | 1203.67 | 1646.50 | 1280.67 | 1348.92 | 1717.00 | 1.00 | 0.07 | 0.894 |
| ILMN_3168172 | mmu-miR-29b | 8863.54 | 10671.04 | 9566.58 | 10569.67 | 12816.42 | 12408.71 | 0.81 | 0.02 | 0.021 |
| ILMN_3167643 | mmu-miR-29c | 11130.09 | 12724.30 | 10376.21 | 11516.63 | 12237.42 | 11522.00 | 0.97 | 0.04 | 0.537 |
| ILMN_3169080 | mmu-miR-302a* | 509.92 | 474.13 | 420.00 | 500.17 | 650.63 | 848.92 | 0.75 | 0.15 | 0.259 |
| ILMN-3167279 | mmu-miR-302b | 405.50 | 404.42 | 334.17 | 456.25 | 551.79 | 655.58 | 0.71 | 0.11 | 0.160 |
| ILMN_3167455 | mmu-miR-30a | 7499.04 | 9903.00 | 9623.17 | 8672.92 | 8397.25 | 12007.58 | 0.95 | 0.12 | 0.612 |
| ILMN_3167158 | mmu-miR-30** | 6764.50 | 7672.17 | 8070.50 | 8424.63 | 7944.17 | 9514.75 | 0.87 | 0.05 | 0.121 |
| ILMN_3167448 | mmu-miR-30b | 7128.54 | 10071.75 | 8593.58 | 7589.21 | 10186.71 | 6425.67 | 1.09 | 0.13 | 0.586 |
| ILMN_3167729 | mmu-miR-30c | 15549.92 | 16869.34 | 15594.17 | 16709.13 | 16597.08 | 17172.46 | 0.95 | 0.03 | 0.280 |
| ILMN_3169085 | mmu-miR-30c-2* | 3190.25 | 2180.88 | 2140.83 | 2618.17 | 2269.79 | 2562.38 | 1.00 | 0.11 | 0.950 |
| ILMN_3167224 | mmu-miR-30d | 10671.04 | 12885.42 | 11860.67 | 13457.67 | 12378.79 | 13630.05 | 0.90 | 0.07 | 0.300 |
| ILMN_3168138 | mmu-miR-30e | 430.54 | 2043.00 | 2363.79 | 1647.25 | 1426.46 | 2394.46 | 0.89 | 0.34 | 0.733 |
| ILMN_3167711 | mmu-miR-30e* | 5959.33 | 7840.33 | 7728.54 | 6860.08 | 8503.96 | 5086.96 | 1.10 | 0.21 | 0.783 |
| ILMN_3167403 | mmu-miR-320 | 13550.42 | 15549.92 | 17594.09 | 16018.79 | 16421.25 | 18310.17 | 0.92 | 0.04 | 0.137 |
| ILMN_3167956 | mmu-miR-323-3p | 794.88 | 845.08 | 774.33 | 736.88 | 1028.46 | 1197.54 | 0.85 | 0.13 | 0.319 |
| ILMN_3168413 | mmu-miR-324-3p | 3418.75 | 5410.33 | 2169.13 | 4336.17 | 6055.29 | 4730.92 | 0.71 | 0.13 | 0.149 |
| ILMN_3167905 | mmu-miR-326 | 4738.33 | 6241.50 | 8017.63 | 7939.92 | 5620.04 | 7185.54 | 0.94 | 0.17 | 0.700 |
| ILMN_3168985 | mmu-miR-327 | 2087.13 | 1735.46 | 1752.54 | 1891.71 | 1864.88 | 2070.79 | 0.96 | 0.08 | 0.632 |
| ILMN_3168198 | mmu-miR-328 | 10071.75 | 11725.58 | 12406.09 | 14146.46 | 11995.75 | 15555.46 | 0.83 | 0.08 | 0.161 |
| ILMN_3168522 | mmu-miR-329 | 460.42 | 440.00 | 2024.58 | 2124.75 | 2204.79 | 2212.17 | 0.44 | 0.24 | 0.142 |
| ILMN_3167996 | mmu-miR-335-5p | 359.63 | 415.75 | 420.67 | 495.17 | 534.25 | 3951.13 | 0.54 | 0.22 | 0.382 |
| ILMN_3168934 | mmu-miR-337-5p | 4956.08 | 4400.17 | 3812.13 | 4336.17 | 3769.50 | 3774.08 | 1.11 | 0.05 | 0.159 |
| ILMN_3167344 | mmu-miR-338-3p | 1377.92 | 904.21 | 972.87 | 2845.54 | 1101.92 | 1264.71 | 0.69 | 0.10 | 0.251 |
| ILMN_3168936 | mmu-miR-339-3p | 1148.71 | 940.83 | 816.67 | 952.71 | 1059.04 | 1358.13 | 0.90 | 0.17 | 0.545 |
| ILMN_3168301 | mmu-miR-339-5p | 3541.04 | 2899.58 | 3208.92 | 3342.75 | 1159.38 | 1404.71 | 1.95 | 0.45 | 0.141 |
| ILMN_3166998 | mmu-miR-340-3p | 488.38 | 546.67 | 701.00 | 1733.54 | 676.08 | 795.50 | 0.66 | 0.19 | 0.324 |
| ILMN_3168866 | mmu-miR-340-5p | 412.58 | 750.38 | 495.00 | 444.13 | 457.38 | 725.17 | 1.08 | 0.29 | 0.952 |
| ILMN_3167123 | mmu-miR-341:9.1 | 2359.71 | 2326.92 | 2451.04 | 2443.96 | 2386.08 | 2666.04 | 0.95 | 0.02 | 0.132 |
| ILMN_3168165 | mmu-miR-342-3p | 4143.88 | 4955.54 | 7397.04 | 4554.83 | 4904.46 | 4907.83 | 1.14 | 0.18 | 0.513 |
| ILMN_3167891 | mmu-miR-344 | 406.29 | 3605.67 | 1515.04 | 3333.88 | 4204.21 | 6039.29 | 0.41 | 0.23 | 0.143 |
| ILMN_3168939 | mmu-miR-345-3p | 3031.63 | 1393.33 | 1162.42 | 1380.13 | 2237.17 | 1722.63 | 1.16 | 0.52 | 0.926 |
| ILMN_3168128 | mmu-miR-345-5p | 635.88 | 1390.96 | 1820.04 | 1492.00 | 631.75 | 790.13 | 1.64 | 0.61 | 0.650 |
| ILMN_3167734 | mmu-miR-346 | 20031.88 | 7738.83 | 7128.50 | 11651.71 | 7658.38 | 6311.17 | 1.29 | 0.22 | 0.364 |
| ILMN_3168429 | mmu-miR-34a | 413.00 | 1792.17 | 2465.71 | 2223.42 | 563.71 | 2888.33 | 1.41 | 0.91 | 0.740 |
| ILMN_3168326 | mmu-miR-350 | 849.79 | 2454.21 | 4417.75 | 3947.92 | 1504.25 | 500.29 | 3.56 | 2.67 | 0.799 |
| ILMN_3168297 | mmu-miR-365 | 7233.79 | 7814.25 | 8574.75 | 9675.00 | 7798.63 | 9737.17 | 0.88 | 0.07 | 0.234 |
| ILMN_3168444 | mmu-miR-369-3p | 555.50 | 1056.42 | 426.38 | 563.13 | 660.29 | 790.13 | 1.04 | 0.31 | 0.973 |
| ILMN 3168318 | mmu-miR-374 | 9675.00 | 9458.17 | 9987.38 | 11211.92 | 10784.96 | 13087.38 | 0.83 | 0.04 | 0.071 |
| ILMN_3167229 | mmu-miR-375 | 1205.67 | 1049.71 | 833.33 | 998.63 | 1150.58 | 1308.25 | 0.92 | 0.16 | 0.597 |
| ILMN_3168505 | mmu-miR-376a | 651.25 | 1356.67 | 445.75 | 635.42 | 746.17 | 841.96 | 1.12 | 0.38 | 0.817 |
| ILMN_3167566 | mmu-miR-376b | 1098.88 | 950.04 | 755.92 | 910.21 | 1100.50 | 1168.71 | 0.91 | 0.16 | 0.548 |
| ILMN_3167006 | mmu-miR-378 | 1737.42 | 2283.75 | 3006.96 | 903.08 | 2321.83 | 4980.50 | 1.17 | 0.39 | 0.683 |
| ILMN_3168180 | mmu-miR-378* | 1097.08 | 682.58 | 1311.33 | 764.75 | 1628.92 | 1225.63 | 0.97 | 0.30 | 0.697 |
| ILMN_3167443 | mmu-miR-379 | 3912.96 | 3067.92 | 4782.00 | 3036.63 | 3109.21 | 1640.54 | 1.73 | 0.60 | 0.296 |
| ILMN_3167239 | mmu-miR-382 | 2964.67 | 734.38 | 5926.54 | 1193.71 | 988.54 | 7544.25 | 1.34 | 0.57 | 0.976 |
| ILMN_3169113 | mmu-miR-382* | 657.00 | 905.67 | 846.75 | 539.00 | 661.29 | 917.54 | 1.17 | 0.13 | 0.400 |
| ILMN_3168946 | mmu-miR-409-5p | 676.13 | 559.54 | 423.08 | 3863.46 | 653.00 | 653.00 | 0.56 | 0.20 | 0.366 |
| ILMN_3167988 | mmu-miR-411 | 511.21 | 1827.79 | 425.29 | 2201.50 | 3205.46 | 1074.25 | 0.40 | 0.10 | 0.057 |
| ILMN_3168062 | mmu-miR-411*:9.1 | 9571.33 | 2465.58 | 2452.38 | 3584.17 | 3688.67 | 3005.04 | 1.38 | 0.64 | 0.604 |
| ILMN_3167373 | mmu-miR-423-3p | 3850.17 | 4361.21 | 4058.58 | 4713.58 | 3801.42 | 3385.46 | 1.05 | 0.12 | 0.827 |
| ILMN_3168947 | mmu-miR-425 | 2731.67 | 4989.50 | 1839.50 | 4003.67 | 3406.96 | 2360.04 | 0.98 | 0.25 | 0.942 |
| ILMN_3167614 | mmu-miR-451 | 1537.04 | 915.13 | 1768.13 | 1446.75 | 996.38 | 1214.79 | 1.15 | 0.16 | 0.427 |
| ILMN_3168131 | mmu-miR-453 | 4605.00 | 838.50 | 497.75 | 920.42 | 692.75 | 3747.17 | 2.12 | 1.48 | 0.932 |
| ILMN_3167131 | mmu-miR-455 | 880.33 | 1036.38 | 1265.46 | 2669.17 | 686.75 | 824.25 | 1.12 | 0.40 | 0.693 |
| ILMN_3167714 | mmu-miR-455* | 1770.46 | 1560.50 | 1505.38 | 1859.63 | 1735.75 | 2008.42 | 0.87 | 0.06 | 0.180 |
| ILMN_3168948 | mmu-miR-463 <br> mmu-miR-465a-3p,mmu-miR-465b-3p,mmu-miR-465c- | 1185.67 | 1106.75 | 1018.08 | 1130.87 | 1282.67 | 1609.83 | 0.85 | 0.12 | 0.336 |
| ILMN_3167236 | 3p,mmu-miR-465a-3p,mmu-miR-465b-3p,mmu-miR-465c-3p,mmu-miR-465a-3p,mmu-miR-465b-3p,mmu-miR-465c- | 1009.12 | 833.04 | 776.75 | 902.25 | 1050.71 | 1328.29 | 0.83 | 0.16 | 0.365 |
| ILMN_3168989 | 3p mmu-miR-465c-5p mmu-miR-466a-3p,mmu-miR-466b-3p,mmu-miR-466c-3p,mmu-miR-466e-3p,mmu-miR-466a-3p,mmu-miR-466b- | 2000.92 | 1558.92 | 1566.46 | 1860.33 | 1797.04 | 2238.04 | 0.88 | 0.11 | 0.389 |
| ILMN_3167875 | 3p,mmu-miR-466c-3p,mmu-miR-466e-3p,mmu-miR-466b-3-3p,mmu-miR-466a-3p,mmu-miR-466b-3p,mmu-miR-466c-3p,mmu-miR-466e-3p,mmu-miR-466a-3p,mmu-miR- | 1671.54 | 2335.04 | 2465.38 | 3714.42 | 1005.87 | 4041.79 | 1.13 | 0.60 | 0.544 |
| ILMN_3168949 | 466b-3p,mmu-miR-466c- mmu-miR-466a-5p | 4515.21 | 3839.79 | 3424.92 | 4204.21 | 3820.92 | 3652.29 | 1.01 | 0.04 | 0.847 |
| ILMN_3169037 | mmu-miR-466f | 4638.13 | 3137.46 | 2934.33 | 3437.33 | 2795.75 | 3635.92 | 1.09 | 0.16 | 0.661 |

Table B1. -Continued

| Illumina ID | NAME | $\frac{\text { LCA1 }}{\text { signal }}$ | $\frac{\text { LCA2 }}{\text { signal }}$ | $\begin{array}{r} \text { LCA3 } \\ \hline \text { signal } \\ \hline \end{array}$ | $\frac{\text { RCA1 }}{\text { signal }}$ | $\begin{array}{r} \text { RCA2 } \\ \hline \text { signal } \end{array}$ | $\frac{\text { RCA3 }}{\text { sianal }}$ | LCA/RCA | SEM |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  | ratio |  | p -value |
| ILMN_3168994 | mmu-miR-466f-3p | 19773.67 | 21036.00 | 20046.63 | 17008.34 | 18428.05 | 15061.84 | 1.21 | 0.06 | 0.046 |
| ILMN_3168993 | mmu-miR-466f-5p | 3607.46 | 588.42 | 529.17 | 2281.38 | 757.92 | 872.42 | 0.99 | 0.30 | 0.660 |
| ILMN_3168995 | mmu-miR-466g | 8615.25 | 8068.79 | 4353.08 | 7939.92 | 6634.75 | 6888.83 | 0.98 | 0.18 | 0.918 |
| ILMN_3169027 | mmu-miR-466i | 18403.92 | 20752.09 | 19052.54 | 14146.46 | 16495.67 | 12264.00 | 1.37 | 0.09 | 0.026 |
| ILMN_3169023 | mmu-miR-4661 | 659.71 | 597.04 | 512.54 | 670.13 | 776.58 | 1031.83 | 0.75 | 0.14 | 0.255 |
| ILMN_3168950 | mmu-miR-467a | 4760.21 | 3773.67 | 3127.88 | 3798.67 | 3084.75 | 3316.67 | 1.14 | 0.10 | 0.295 |
| ILMN_3169039 | mmu-miR-467f | 13339.00 | 11995.75 | 10910.88 | 8045.29 | 9490.50 | 8752.25 | 1.39 | 0.13 | 0.079 |
| ILMN_3169048 | mmu-miR-467h | 2613.58 | 1986.50 | 1929.25 | 2309.21 | 2135.38 | 2246.83 | 0.97 | 0.08 | 0.798 |
| ILMN_3168457 | mmu-miR-484 | 6448.42 | 6523.42 | 7945.04 | 7063.71 | 6685.13 | 8623.25 | 0.94 | 0.02 | 0.096 |
| ILMN_3167240 | mmu-miR-486 | 3670.83 | 4158.63 | 3541.04 | 2980.63 | 915.46 | 6138.21 | 2.12 | 1.23 | 0.817 |
| ILMN_3167805 | mmu-miR-487b | 733.29 | 650.63 | 549.21 | 701.00 | 833.83 | 1005.08 | 0.79 | 0.14 | 0.288 |
| ILMN_3168506 | mmu-miR-489 | 6101.46 | 6060.25 | 5626.25 | 5644.04 | 5270.29 | 4831.13 | 1.13 | 0.03 | 0.026 |
| ILMN_3168999 | mmu-miR-493 | 3883.25 | 611.13 | 540.63 | 1219.96 | 813.46 | 3067.92 | 1.37 | 0.92 | 0.990 |
| ILMN_3168446 | mmu-miR-494 | 4595.67 | 4564.79 | 4233.29 | 5646.21 | 4829.42 | 4803.79 | 0.88 | 0.04 | 0.111 |
| ILMN_3167437 | mmu-miR-497 | 2369.67 | 2334.00 | 3830.25 | 3541.04 | 2026.46 | 642.58 | 2.59 | 1.69 | 0.607 |
| ILMN_3169000 | mmu-miR-504 | 22161.04 | 3251.71 | 3991.13 | 12793.30 | 4591.04 | 2322.75 | 1.39 | 0.34 | 0.417 |
| ILMN_3169017 | mmu-miR-511 | 5985.63 | 5676.83 | 4482.13 | 2517.96 | 2840.54 | 1786.92 | 2.29 | 0.15 | 0.006 |
| ILMN_3168686 | mmu-miR-532-3p | 5222.71 | 5011.83 | 5698.58 | 5783.96 | 4594.83 | 6073.17 | 0.98 | 0.06 | 0.622 |
| ILMN_3167658 | mmu-miR-540-3p | 1146.58 | 1064.29 | 1003.17 | 1006.92 | 1267.83 | 1499.04 | 0.88 | 0.14 | 0.417 |
| ILMN_3167074 | mmu-miR-542-3p | 4287.42 | 3947.83 | 3635.96 | 4098.25 | 3718.92 | 3631.25 | 1.04 | 0.02 | 0.178 |
| ILMN_3167043 | mmu-miR-546 | 753.33 | 670.42 | 674.04 | 692.75 | 932.96 | 1054.12 | 0.82 | 0.14 | 0.279 |
| ILMN_3168117 | mmu-miR-547 | 799.71 | 763.04 | 474.38 | 581.79 | 665.17 | 643.17 | 1.09 | 0.19 | 0.710 |
| ILMN_3169004 | mmu-miR-574-3p | 4864.08 | 7330.58 | 6787.25 | 6662.38 | 7275.21 | 4345.08 | 1.10 | 0.24 | 0.867 |
| ILMN_3169003 | mmu-miR-574-5p | 10644.21 | 10530.29 | 10890.25 | 12926.25 | 12954.42 | 14359.21 | 0.80 | 0.02 | 0.018 |
| ILMN_3169020 | mmu-miR-582-5p | 2503.00 | 1979.63 | 2027.83 | 2291.54 | 2031.38 | 2162.46 | 1.00 | 0.05 | 0.943 |
| ILMN_3169005 | mmu-miR-590-5p | 545.42 | 469.21 | 327.25 | 551.88 | 566.88 | 596.25 | 0.79 | 0.13 | 0.247 |
| ILMN_3167257 | mmu-miR-592 | 7254.04 | 7185.54 | 6958.50 | 8574.75 | 8114.00 | 8715.50 | 0.84 | 0.03 | 0.031 |
| ILMN_3167379 | mmu-miR-615-3p | 6650.54 | 5950.79 | 5444.38 | 5444.38 | 5839.50 | 4835.58 | 1.12 | 0.06 | 0.180 |
| ILMN_3168964 | mmu-miR-615-5p | 361.75 | 420.63 | 332.50 | 480.46 | 469.33 | 538.79 | 0.76 | 0.08 | 0.112 |
| ILMN_3167305 | mmu-miR-652 | 7197.58 | 7087.13 | 9056.71 | 7885.33 | 6417.33 | 8239.46 | 1.04 | 0.06 | 0.634 |
| ILMN_3168475 | mmu-miR-654-3p | 8672.92 | 2441.04 | 4160.67 | 3739.54 | 2629.29 | 2068.88 | 1.75 | 0.42 | 0.264 |
| ILMN_3169006 | mmu-miR-654-5p | 644.58 | 544.13 | 433.42 | 607.21 | 730.75 | 819.29 | 0.78 | 0.15 | 0.282 |
| ILMN_3168959 | mmu-miR-666-3p | 677.13 | 1178.71 | 331.38 | 433.71 | 489.33 | 530.83 | 1.53 | 0.52 | 0.441 |
| ILMN_3167968 | mmu-miR-667 | 1973.58 | 1795.00 | 395.88 | 2165.88 | 521.63 | 3515.88 | 1.49 | 1.00 | 0.651 |
| ILMN_3166951 | mmu-miR-669c | 1498.17 | 4065.71 | 1937.54 | 4782.00 | 3031.63 | 780.29 | 1.38 | 0.63 | 0.826 |
| ILMN_3169026 | mmu-miR-669d | 1662.58 | 512.33 | 622.21 | 2907.83 | 2440.25 | 884.75 | 0.49 | 0.15 | 0.141 |
| ILMN_3168279 | mmu-miR-676 | 5726.75 | 5088.00 | 5086.96 | 5129.63 | 5141.79 | 5499.13 | 1.01 | 0.06 | 0.896 |
| ILMN_3167814 | mmu-miR-678 | 779.25 | 737.79 | 940.83 | 730.88 | 981.58 | 1007.25 | 0.92 | 0.09 | 0.412 |
| ILMN_3167520 | mmu-miR-679 | 5228.38 | 4369.00 | 4377.54 | 4757.17 | 4578.75 | 4277.63 | 1.03 | 0.04 | 0.603 |
| ILMN_3168259 | mmu-miR-682 | 6199.79 | 6417.33 | 4563.75 | 1549.71 | 4416.25 | 1374.17 | 2.92 | 0.76 | 0.050 |
| ILMN_3166975 | mmu-miR-683 | 12550.09 | 12289.58 | 11024.80 | 7267.58 | 9680.58 | 5028.21 | 1.73 | 0.27 | 0.046 |
| ILMN_3167156 | mmu-miR-690 | 17526.21 | 19632.05 | 16042.00 | 12816.42 | 18001.00 | 11652.84 | 1.28 | 0.09 | 0.067 |
| ILMN_3166942 | mmu-miR-691 | 1275.25 | 1047.46 | 959.33 | 993.08 | 1245.08 | 1575.58 | 0.91 | 0.20 | 0.565 |
| ILMN_3168503 | mmu-miR-692 | 709.38 | 511.38 | 483.67 | 594.83 | 698.67 | 877.75 | 0.83 | 0.19 | 0.403 |
| ILMN_3167541 | mmu-miR-694 | 3619.13 | 2360.04 | 2253.08 | 2304.33 | 2933.79 | 2198.13 | 1.13 | 0.23 | 0.680 |
| ILMN_3166950 | mmu-miR-697 | 359.42 | 398.75 | 320.92 | 384.63 | 509.92 | 529.75 | 0.77 | 0.09 | 0.162 |
| ILMN_3167754 | mmu-miR-700 | 592.29 | 953.38 | 1178.71 | 1110.63 | 1695.50 | 3865.58 | 0.47 | 0.08 | 0.196 |
| ILMN_3167918 | mmu-miR-701 | 742.38 | 625.54 | 634.67 | 1164.54 | 846.54 | 1162.42 | 0.64 | 0.06 | 0.049 |
| ILMN_3167248 | mmu-miR-703 | 13309.42 | 12993.84 | 10890.25 | 6593.67 | 10256.34 | 2899.58 | 2.35 | 0.74 | 0.067 |
| ILMN_3168285 | mmu-miR-706 | 22050.04 | 22428.75 | 21556.58 | 20853.67 | 21401.50 | 20035.00 | 1.06 | 0.01 | 0.013 |
| ILMN_3167086 | mmu-miR-707 | 7393.58 | 3160.46 | 2006.38 | 2487.04 | 2041.17 | 2891.42 | 1.74 | 0.66 | 0.419 |
| ILMN_3168249 | mmu-miR-708 | 20880.92 | 17489.71 | 15832.75 | 19306.34 | 17385.92 | 18310.17 | 0.98 | 0.06 | 0.843 |
| ILMN_3168185 | mmu-miR-708* | 436.71 | 412.17 | 357.67 | 451.63 | 561.54 | 644.17 | 0.75 | 0.12 | 0.195 |
| ILMN_3167605 | mmu-miR-709 | 7939.92 | 9219.58 | 10530.29 | 9458.17 | 8456.17 | 8426.71 | 1.06 | 0.12 | 0.712 |
| ILMN_3167133 | mmu-miR-712* | 475.71 | 437.38 | 395.21 | 502.50 | 598.58 | 813.88 | 0.72 | 0.13 | 0.221 |
| ILMN_3167549 | mmu-miR-719 | 16032.33 | 4829.42 | 2888.33 | 6685.13 | 3965.54 | 4504.46 | 1.42 | 0.52 | 0.479 |
| ILMN_3167188 | mmu-miR-720 | 8355.92 | 9518.08 | 8073.08 | 8046.96 | 8974.83 | 7816.54 | 1.04 | 0.01 | 0.052 |
| ILMN_3167283 | mmu-miR-742 | 512.92 | 559.13 | 544.25 | 718.25 | 838.50 | 1288.46 | 0.60 | 0.09 | 0.136 |
| ILMN_3166970 | mmu-miR-743a | 512.21 | 439.58 | 399.96 | 551.67 | 648.50 | 1012.42 | 0.67 | 0.15 | 0.233 |
| ILMN_3167180 | mmu-miR-744 | 2333.21 | 4804.21 | 5759.54 | 5401.71 | 4005.08 | 2455.21 | 1.33 | 0.56 | 0.870 |
| ILMN_3167621 | mmu-miR-758 | 2437.71 | 1093.79 | 1064.54 | 1208.63 | 1242.46 | 1822.08 | 1.16 | 0.44 | 0.872 |
| ILMN_3168003 | mmu-miR-761 | 2497.54 | 3091.08 | 2527.79 | 2135.42 | 2772.96 | 5786.21 | 0.91 | 0.24 | 0.548 |
| ILMN_3167967 | mmu-miR-762 | 1446.96 | 2176.50 | 1248.04 | 1192.38 | 1307.04 | 1736.79 | 1.20 | 0.27 | 0.644 |
| ILMN_3168100 | mmu-miR-763 | 478.42 | 476.58 | 1785.33 | 550.13 | 603.54 | 762.67 | 1.33 | 0.50 | 0.539 |
| ILMN_3168958 | mmu-miR-770-5p | 3437.33 | 2517.96 | 6028.38 | 5331.38 | 1896.54 | 4585.63 | 1.10 | 0.23 | 0.960 |
| ILMN_3168388 | mmu-miR-7a | 3246.50 | 1230.08 | 5498.75 | 4399.25 | 1627.04 | 1111.58 | 2.15 | 1.40 | 0.640 |
| ILMN_3169112 | mmu-miR-7a* | 21556.58 | 4591.04 | 3752.42 | 18149.54 | 5470.58 | 11386.92 | 0.79 | 0.25 | 0.649 |
| ILMN_3168519 | mmu-miR-7b | 410.71 | 428.83 | 350.42 | 468.13 | 562.29 | 693.67 | 0.72 | 0.11 | 0.173 |
| ILMN_3166949 | mmu-miR-805 | 17424.79 | 17890.58 | 16812.92 | 13935.55 | 17785.17 | 11698.59 | 1.23 | 0.12 | 0.188 |
| ILMN_3168967 | mmu-miR-871 | 875.92 | 832.04 | 961.00 | 964.46 | 1104.50 | 1487.58 | 0.77 | 0.08 | 0.145 |
| ILMN_3169012 | mmu-miR-872 | 802.50 | 841.96 | 523.46 | 542.29 | 633.13 | 588.00 | 1.23 | 0.18 | 0.313 |
| ILMN_3169013 | mmu-miR-873 | 2217.58 | 1856.42 | 1678.29 | 1962.58 | 1838.92 | 2169.00 | 0.97 | 0.10 | 0.772 |
| ILMN_3169014 | mmu-miR-875-3p | 997.42 | 1231.29 | 841.17 | 368.63 | 6311.71 | 4967.00 | 1.02 | 0.84 | 0.247 |
| ILMN_3167525 | mmu-miR-878-3p | 523.96 | 544.25 | 485.46 | 556.83 | 758.92 | 964.79 | 0.72 | 0.13 | 0.203 |
| ILMN_3169011 | mmu-miR-878-5p | 378.33 | 372.83 | 318.42 | 395.42 | 505.96 | 586.50 | 0.75 | 0.12 | 0.194 |
| ILMN_3169123 | mmu-miR-881* | 608.92 | 519.63 | 533.46 | 607.00 | 759.71 | 967.62 | 0.75 | 0.13 | 0.218 |
| ILMN_3168975 | mmu-miR-883b-3p | 436.17 | 409.08 | 322.04 | 447.08 | 516.29 | 524.58 | 0.79 | 0.10 | 0.193 |
| ILMN_3168974 | mmu-miR-883b-5p | 891.42 | 685.83 | 644.25 | 685.46 | 915.13 | 1133.29 | 0.87 | 0.22 | 0.488 |
| ILMN_3166986 | mmu-miR-92a | 11130.09 | 12468.00 | 13055.59 | 13087.38 | 13643.17 | 15132.88 | 0.88 | 0.02 | 0.026 |
| ILMN_3169007 | mmu-miR-92b | 568.21 | 1272.92 | 2520.71 | 1678.79 | 602.58 | 780.79 | 1.89 | 0.84 | 0.654 |
| ILMN_3168517 | mmu-miR-93 | 3298.00 | 3786.21 | 5610.58 | 2960.92 | 3130.79 | 3484.75 | 1.31 | 0.15 | 0.200 |
| ILMN_3169104 | mmu-miR-93* | 2218.92 | 1742.42 | 3284.63 | 821.88 | 892.21 | 1004.83 | 2.64 | 0.38 | 0.068 |
| ILMN_3168174 | mmu-miR-96 | 2956.13 | 2387.38 | 2265.33 | 2793.04 | 2402.46 | 2720.04 | 0.96 | 0.07 | 0.634 |
| ILMN_3167422 | mmu-miR-98 | 4673.38 | 5104.42 | 6270.00 | 6153.13 | 6924.92 | 3930.38 | 1.03 | 0.28 | 0.833 |
| ILMN_3167809 | mmu-miR-99a | 3041.96 | 5247.96 | 4829.42 | 3175.67 | 2623.29 | 2876.79 | 1.55 | 0.31 | 0.216 |
| ILMN_3168262 | mmu-miR-99b | 5680.17 | 8199.42 | 7544.00 | 7046.67 | 5875.79 | 8199.42 | 1.04 | 0.18 | 0.937 |
| ILMN_3169129 | solexa-1127-427 | 5367.54 | 3744.83 | 8170.75 | 6730.33 | 5605.75 | 8137.96 | 0.82 | 0.10 | 0.201 |
| ILMN_3169133 | solexa-1328-360 | 2313.75 | 1752.17 | 5676.83 | 7613.17 | 3116.63 | 2474.88 | 1.05 | 0.62 | 0.685 |
| ILMN_3169134 | solexa-1416-339_2 | 450.25 | 419.04 | 309.42 | 457.83 | 469.33 | 542.13 | 0.82 | 0.13 | 0.296 |
| ILMN_3169137 | solexa-1837-257 | 9903.00 | 1498.17 | 1411.75 | 1820.04 | 654.92 | 1465.63 | 2.90 | 1.33 | 0.370 |
| ILMN_3169138 | solexa-200-2167 | 1874.67 | 2549.42 | 3271.42 | 996.96 | 1044.54 | 2582.88 | 1.86 | 0.34 | 0.053 |
| ILMN_3168343 | solexa-2054-231 | 1689.88 | 1343.33 | 1230.08 | 1461.08 | 1476.21 | 1896.54 | 0.91 | 0.15 | 0.541 |
| ILMN_3169142 | solexa-239-1823 | 7759.88 | 8752.25 | 8686.04 | 9987.38 | 9466.25 | 6965.38 | 0.98 | 0.14 | 0.757 |
| ILMN_3169146 | solexa-27-9416 | 16495.71 | 18408.50 | 20501.34 | 17560.71 | 19026.83 | 17471.05 | 1.03 | 0.07 | 0.762 |
| ILMN_3169149 | solexa-3024-155 | 606.13 | 608.79 | 580.25 | 672.63 | 835.96 | 1041.42 | 0.73 | 0.10 | 0.159 |
| ILMN_3169150 | solexa-3062-153 | 5645.46 | 6506.71 | 7738.83 | 7290.83 | 6412.04 | 9712.79 | 0.86 | 0.08 | 0.209 |
| ILMN_3169151 | solexa-308-1456 | 6231.13 | 7976.88 | 9409.67 | 6231.13 | 8025.50 | 10071.75 | 0.98 | 0.02 | 0.382 |
| ILMN_3169152 | solexa-3253-144 | 7950.75 | 7275.21 | 6417.33 | 3827.54 | 3951.13 | 4526.21 | 1.78 | 0.19 | 0.041 |
| ILMN_3169153 | solexa-403-1161 | 4967.00 | 6707.58 | 7514.00 | 5237.75 | 6860.08 | 8017.63 | 0.95 | 0.01 | 0.096 |
| ILMN_3167558 | solexa-4153-111 | 1215.29 | 977.67 | 978.87 | 905.46 | 1150.58 | 1313.79 | 0.98 | 0.18 | 0.766 |
| ILMN_3169158 | solexa-5560-82 | 10569.67 | 11130.09 | 13044.92 | 12289.58 | 10591.50 | 11019.96 | 1.03 | 0.09 | 0.820 |
| ILMN_3169159 | solexa-5593-81 | 2001.96 | 902.42 | 809.67 | 857.13 | 1521.75 | 5641.96 | 1.02 | 0.67 | 0.503 |

Table B1. -Continued

| Illumina_ID | NAME | $\begin{gathered} \text { LCA1 } \\ \hline \text { signal } \\ \hline \end{gathered}$ | $\frac{\text { LCA2 }}{\text { signa }}$ | $\frac{\text { LCA3 }}{\text { signal }}$ | $\frac{\text { RCA1 }}{\text { signal }}$ | $\frac{\text { RCA2 }}{\text { signal }}$ | $\frac{\text { RCA3 }}{\text { signal }}$ | LCA/RCA | SEM | p-value |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  | ratio |  |  |
| ILMN_3169160 | solexa-564-789 | 635.42 | 485.33 | 620.21 | 615.25 | 646.67 | 935.29 | 0.82 | 0.11 | 0.257 |
| ILMN_3169161 | solexa-622-718 | 4158.63 | 4729.42 | 5056.29 | 2894.67 | 6138.21 | 812.13 | 2.81 | 1.72 | 0.491 |
| ILMN_3169162 | solexa-897-515 | 858.38 | 1481.38 | 1335.92 | 2856.25 | 2239.50 | 1059.13 | 0.74 | 0.28 | 0.336 |
| ILMN_3168529 | mmu-miR-106a:9.1 | 358.54 | 406.29 | 391.54 | 471.46 | 600.92 | 722.04 | 0.66 | 0.06 | 0.079 |
| ILMN_3168955 | mmu-miR-1224 | 335.71 | 373.88 | 300.29 | 388.13 | 2031.38 | 425.96 | 0.58 | 0.21 | 0.363 |
| ILMN_3167491 | mmu-miR-128a:9.1 | 1453.65 | 2245.81 | 798.21 | 1018.06 | 688.98 | 363.96 | 2.29 | 0.53 | 0.163 |
| ILMN_3169092 | mmu-miR-15a* | 1395.33 | 354.71 | 292.71 | 2132.46 | 1289.33 | 566.25 | 0.48 | 0.11 | 0.080 |
| ILMN_3169071 | mmu-miR-186* | 574.29 | 551.67 | 413.38 | 544.63 | 704.29 | 599.54 | 0.84 | 0.11 | 0.264 |
| ILMN_3169055 | mmu-miR-27b* | 385.96 | 340.63 | 1538.00 | 452.38 | 2772.96 | 1072.08 | 0.80 | 0.38 | 0.526 |
| ILMN_3169077 | mmu-miR-294* | 341.96 | 1307.04 | 273.42 | 394.54 | 404.08 | 3316.67 | 1.39 | 0.95 | 0.601 |
| ILMN_3169101 | mmu-miR-29c* | 505.71 | 1592.33 | 1942.42 | 2464.38 | 3731.21 | 508.13 | 1.48 | 1.17 | 0.525 |
| ILMN_3167828 | mmu-miR-31* | 614.38 | 508.38 | 382.46 | 559.21 | 621.96 | 644.46 | 0.84 | 0.15 | 0.364 |
| ILMN_3168288 | mmu-miR-34b-5p | 343.92 | 1174.21 | 292.63 | 415.83 | 447.29 | 555.17 | 1.33 | 0.66 | 0.708 |
| ILMN_3168943 | mmu-miR-362-3p | 418.79 | 436.71 | 704.38 | 1382.08 | 558.25 | 474.63 | 0.86 | 0.34 | 0.505 |
| ILMN_3168438 | mmu-miR-376b* | 1509.79 | 3406.96 | 3714.42 | 5646.21 | 4929.63 | 442.04 | 3.12 | 2.64 | 0.749 |
| ILMN_3167115 | mmu-miR-669b | 583.25 | 341.58 | 340.00 | 412.00 | 684.83 | 468.13 | 0.88 | 0.28 | 0.572 |
| ILMN_3169035 | mmu-miR-669h-3p | 1062.38 | 392.42 | 575.75 | 592.08 | 464.29 | 503.58 | 1.26 | 0.28 | 0.435 |
| ILMN_3167514 | mmu-miR-671-5p | 331.38 | 351.58 | 326.08 | 393.63 | 461.04 | 593.58 | 0.72 | 0.09 | 0.142 |
| ILMN_3168277 | mmu-miR-681 | 324.71 | 559.13 | 316.17 | 448.08 | 5086.96 | 561.21 | 0.47 | 0.18 | 0.377 |
| ILMN_3167808 | mmu-miR-101a | 4318.83 | 3935.00 | 4041.79 | 1548.58 | 1528.21 | 112.88 | 13.72 | 11.04 | 0.022 |
| ILMN_3169040 | mmu-miR-1190 | 5605.75 | 5272.50 | 4843.54 | 3600.13 | 4881.71 | 273.33 | 6.79 | 5.47 | 0.197 |
| ILMN_3168025 | mmu-miR-134 | 1851.17 | 310.29 | 1692.54 | 749.58 | 415.33 | 2393.96 | 1.31 | 0.58 | 0.870 |
| ILMN_3166992 | mmu-miR-139-5p | 2170.25 | 5954.17 | 2477.67 | 3069.42 | 327.67 | 6071.04 | 6.43 | 5.87 | 0.903 |
| ILMN_3169086 | mmu-miR-148a* | 537.13 | 580.25 | 737.33 | 422.04 | 734.58 | 352.92 | 1.38 | 0.38 | 0.536 |
| ILMN_3169054 | mmu-miR-15b* | 1074.25 | 1560.25 | 3127.88 | 4143.88 | 2692.13 | 286.50 | 3.92 | 3.50 | 0.819 |
| ILMN_3168478 | mmu-miR-199a-3p:9.1 | 7658.38 | 6657.50 | 4256.88 | 6241.50 | 5367.54 | 329.46 | 5.13 | 3.90 | 0.123 |
| ILMN_3167787 | mmu-miR-19a | 1392.75 | 3951.13 | 274.71 | 1089.33 | 2892.50 | 488.46 | 1.07 | 0.25 | 0.409 |
| ILMN_3167196 | mmu-miR-204 | 2598.92 | 2659.42 | 1078.96 | 1725.67 | 3269.50 | 131.92 | 3.50 | 2.35 | 0.510 |
| ILMN_3167837 | mmu-miR-31 | 476.96 | 1187.21 | 663.71 | 1497.17 | 2368.79 | 70.75 | 3.40 | 2.99 | 0.444 |
| ILMN_3168391 | mmu-miR-361 | 1028.88 | 3042.92 | 3481.21 | 1760.29 | 103.17 | 4569.75 | 10.28 | 9.61 | 0.799 |
| ILMN_3168146 | mmu-miR-434-3p | 159.29 | 1188.71 | 1328.29 | 3977.00 | 2327.67 | 2986.88 | 0.33 | 0.15 | 0.115 |
| ILMN_3169009 | mmu-miR-466d-3p | 390.04 | 114.33 | 2052.83 | 2345.54 | 2535.71 | 2793.50 | 0.32 | 0.21 | 0.076 |
| ILMN_3167553 | mmu-miR-491 | 325.00 | 357.08 | 321.00 | 353.79 | 450.42 | 589.96 | 0.75 | 0.11 | 0.211 |
| ILMN_3168956 | mmu-miR-551b | 910.13 | 520.88 | 1237.50 | 365.92 | 365.83 | 553.75 | 2.05 | 0.32 | 0.100 |
| ILMN_3169032 | mmu-miR-669f | 493.67 | 2204.79 | 1521.96 | 1091.67 | 3134.25 | 113.04 | 4.87 | 4.30 | 0.962 |
| ILMN_3167160 | mmu-miR-684 | 7944.17 | 8299.67 | 6612.00 | 3797.58 | 7022.29 | 77.71 | 29.45 | 27.82 | 0.120 |
| ILMN_3168126 | mmu-miR-685 | 1151.08 | 5195.25 | 4277.63 | 4185.46 | 994.79 | 119.42 | 13.77 | 11.12 | 0.537 |
| ILMN_3167032 | mmu-miR-699 | 1224.04 | 2964.67 | 2140.17 | 994.96 | 3342.75 | 324.21 | 2.91 | 1.85 | 0.485 |
| ILMN_3168037 | mmu-miR-702 | 2705.71 | 1997.08 | 1557.33 | 3228.63 | 4591.04 | 239.88 | 2.59 | 1.96 | 0.649 |
| ILMN_3167999 | mmu-miR-712 | 1206.92 | 2008.42 | 3316.67 | 6350.46 | 142.67 | 3385.46 | 5.08 | 4.50 | 0.647 |
| ILMN_3169121 | mmu-miR-742* | 58.71 | 589.75 | 2022.17 | 3866.42 | 4529.50 | 5359.04 | 0.17 | 0.11 | 0.002 |
| ILMN_3169125 | mmu-miR-877* | 4173.58 | 2333.21 | 475.63 | 157.38 | 1610.29 | 3112.67 | 9.37 | 8.58 | 0.750 |
| ILMN_3169155 | solexa-447-1003 | 731.33 | 1492.00 | 948.71 | 596.33 | 71.92 | 2544.33 | 7.45 | 6.65 | 0.989 |
| ILMN_3169056 | mmu-miR-29b* | 120.71 | 2720.04 | 2273.71 | 337.08 | 4854.67 | 4338.46 | 0.48 | 0.06 | 0.144 |
| ILMN_3168929 | mmu-miR-34b-3p | 262.50 | 281.67 | 1015.58 | 381.33 | 413.13 | 568.38 | 1.05 | 0.37 | 0.764 |
| ILMN_3168374 | mmu-miR-693-3p | 323.96 | 1404.71 | 837.04 | 294.83 | 2176.50 | 506.71 | 1.13 | 0.29 | 0.717 |
| ILMN_3169103 | mmu-miR-92a* | 426.96 | 430.79 | 329.58 | 364.96 | 558.67 | 390.83 | 0.93 | 0.12 | 0.526 |
| ILMN_3168320 | mmu-miR-1 | 629.92 | 70.71 | 65.54 | 753.71 | 2334.00 | 4495.54 | 0.29 | 0.27 | 0.209 |
| ILMN_3167231 | mmu-miR-101b:9.1 | 876.88 | 96.67 | 655.08 | 611.88 | 4847.96 | 91.46 | 2.87 | 2.18 | 0.527 |
| ILMN_3169051 | mmu-miR-1198 | 501.58 | 153.75 | 1689.96 | 5186.50 | 64.58 | 2431.88 | 1.06 | 0.68 | 0.350 |
| ILMN_3169061 | mmu-miR-125b* | 367.08 | 319.54 | 314.29 | 375.13 | 443.04 | 605.96 | 0.74 | 0.13 | 0.229 |
| ILMN_3167008 | mmu-miR-129-3p | 4128.71 | 4291.58 | 2429.75 | 1487.46 | 85.63 | 98.96 | 25.82 | 13.68 | 0.034 |
| ILMN_3168045 | mmu-miR-17* | 105.79 | 947.33 | 2608.96 | 397.63 | 1215.96 | 99.96 | 9.05 | 8.53 | 0.557 |
| ILMN_3168280 | mmu-miR-181c | 1460.00 | 153.42 | 774.04 | 851.54 | 2497.54 | 169.08 | 2.12 | 1.32 | 0.738 |
| ILMN_3167628 | mmu-miR-196a | 368.79 | 112.79 | 2876.79 | 2682.50 | 138.17 | 6590.46 | 0.46 | 0.20 | 0.201 |
| ILMN_3169099 | mmu-miR-26b* | 397.75 | 924.71 | 930.71 | 95.79 | 451.92 | 62.87 | 7.00 | 3.95 | 0.082 |
| ILMN_3168927 | mmu-miR-296-3p | 1121.00 | 2142.58 | 2945.58 | 240.17 | 3026.13 | 229.25 | 6.07 | 3.57 | 0.476 |
| ILMN_3166969 | mmu-miR-324-5p | 835.63 | 1509.79 | 182.75 | 790.88 | 1482.33 | 194.17 | 1.01 | 0.03 | 0.347 |
| ILMN_3167611 | mmu-miR-331-3p | 603.54 | 906.46 | 1658.96 | 87.17 | 1977.33 | 92.33 | 8.45 | 5.11 | 0.703 |
| ILMN_3168410 | mmu-miR-425* | 542.79 | 823.29 | 191.00 | 1560.25 | 264.50 | 2585.75 | 1.18 | 0.97 | 0.381 |
| ILMN_3168991 | mmu-miR-466c-5p | 1895.63 | 284.79 | 858.38 | 353.92 | 368.33 | 430.79 | 2.71 | 1.37 | 0.320 |
| ILMN_3168996 | mmu-miR-466h | 2806.79 | 851.04 | 249.08 | 2043.00 | 1428.17 | 384.96 | 0.87 | 0.25 | 0.970 |
| ILMN_3167922 | mmu-miR-541 | 1150.58 | 1818.92 | 902.75 | 840.92 | 112.63 | 133.67 | 8.09 | 4.32 | 0.152 |
| ILMN_3167846 | mmu-miR-665 | 244.63 | 638.79 | 455.17 | 752.54 | 215.29 | 1853.17 | 1.18 | 0.89 | 0.447 |
| ILMN_3168520 | mmu-miR-668 | 295.13 | 4164.88 | 5160.88 | 1942.42 | 3541.33 | 77.13 | 22.75 | 22.09 | 0.564 |
| ILMN_3167536 | mmu-miR-669a | 1079.38 | 1023.88 | 688.54 | 159.04 | 100.33 | 893.13 | 5.92 | 2.76 | 0.283 |
| ILMN_3169131 | solexa-1278-371 | 915.33 | 499.92 | 806.42 | 1781.92 | 98.00 | 251.96 | 2.94 | 1.33 | 0.953 |
| ILMN_3169147 | solexa-284-1594 | 198.13 | 1990.33 | 5317.46 | 1320.92 | 1827.79 | 221.00 | 8.43 | 7.82 | 0.543 |
| ILMN_3168578 | solexa-5306-86 | 330.46 | 432.46 | 642.46 | 77.75 | 75.79 | 481.96 | 3.76 | 1.29 | 0.045 |
| ILMN_3167755 | mmu-miR-182 | 424.63 | 260.00 | 252.46 | 299.17 | 919.50 | 570.83 | 0.71 | 0.36 | 0.338 |
| ILMN_3167244 | mmu-miR-410 | 313.75 | 323.25 | 272.88 | 1031.21 | 422.33 | 519.79 | 0.53 | 0.13 | 0.198 |
| ILMN_3168422 | mmu-miR-693-5p | 290.71 | 343.67 | 322.50 | 345.54 | 454.25 | 532.50 | 0.73 | 0.07 | 0.110 |
| ILMN_3169127 | solexa-103-3961 | 290.67 | 332.17 | 1234.58 | 834.33 | 1355.75 | 98.92 | 4.36 | 4.06 | 0.846 |
| ILMN_3169140 | solexa-201-2163 | 989.17 | 363.75 | 530.33 | 436.17 | 147.58 | 214.42 | 2.40 | 0.07 | 0.069 |
| ILMN_3169145 | solexa-2564-185 | 335.71 | 513.75 | 399.79 | 135.63 | 165.92 | 497.83 | 2.12 | 0.68 | 0.371 |
| ILMN_3169156 | solexa-4983-92 | 941.29 | 344.17 | 2614.13 | 347.13 | 398.83 | 344.54 | 3.72 | 2.01 | 0.309 |
| ILMN_3169045 | mmu-miR-1194 | 2111.83 | 1377.13 | 292.63 | 184.96 | 181.08 | 154.13 | 6.97 | 2.77 | 0.171 |
| ILMN_3168012 | mmu-miR-142-3p | 964.67 | 333.58 | 440.21 | 241.75 | 1734.04 | 267.50 | 1.94 | 1.11 | 0.816 |
| ILMN_3167894 | mmu-miR-146b | 855.00 | 1248.04 | 177.13 | 780.79 | 213.92 | 204.50 | 2.60 | 1.62 | 0.398 |
| ILMN_3168019 | mmu-miR-206 | 1404.71 | 2655.33 | 94.75 | 5488.83 | 101.42 | 116.88 | 9.08 | 8.55 | 0.814 |
| ILMN_3168406 | mmu-miR-291b-3p | 798.17 | 257.38 | 428.67 | 81.13 | 756.92 | 88.33 | 5.01 | 2.74 | 0.657 |
| ILMN_3167162 | mmu-miR-291b-5p | 2615.58 | 2294.50 | 2501.92 | 133.54 | 136.25 | 162.88 | 17.26 | 1.24 | 0.002 |
| ILMN_3168984 | mmu-miR-297c | 79.67 | 3435.04 | 78.25 | 86.17 | 462.08 | 3233.04 | 2.79 | 2.33 | 0.975 |
| ILMN_3167913 | mmu-miR-299* | 144.88 | 522.17 | 1512.04 | 173.75 | 235.29 | 1013.96 | 1.51 | 0.40 | 0.242 |
| ILMN_3168116 | mmu-miR-301a | 489.29 | 305.04 | 987.42 | 248.29 | 428.08 | 268.58 | 2.12 | 0.86 | 0.371 |
| ILMN_3169084 | mmu-miR-30c-1* | 99.08 | 98.50 | 373.79 | 98.71 | 2055.71 | 658.21 | 0.54 | 0.28 | 0.346 |
| ILMN_3168935 | mmu-miR-338-5p | 652.54 | 984.04 | 161.58 | 900.88 | 194.42 | 203.38 | 2.19 | 1.43 | 0.652 |
| ILMN_3168938 | mmu-miR-342-5p | 76.42 | 2631.63 | 685.46 | 452.92 | 84.58 | 90.21 | 12.96 | 9.33 | 0.396 |
| ILMN_3167138 | mmu-miR-376c | 84.25 | 1343.38 | 1022.88 | 1155.58 | 95.54 | 275.58 | 5.95 | 4.19 | 0.705 |
| ILMN_3168987 | mmu-miR-421 | 1717.83 | 178.21 | 1020.92 | 517.79 | 212.83 | 227.83 | 2.88 | 1.07 | 0.214 |
| ILMN_3168006 | mmu-miR-434-5p | 1383.08 | 202.67 | 648.88 | 197.54 | 7738.83 | 188.71 | 3.49 | 2.01 | 0.555 |
| ILMN_3169022 | mmu-miR-467e | 241.38 | 1512.04 | 1293.83 | 239.75 | 1860.33 | 291.92 | 2.08 | 1.18 | 0.643 |
| ILMN_3168236 | mmu-miR-483* | 257.21 | 207.83 | 1296.04 | 1249.63 | 234.29 | 2892.50 | 0.51 | 0.20 | 0.197 |
| ILMN_3167221 | mmu-miR-485 | 486.00 | 855.25 | 71.13 | 1105.00 | 77.96 | 80.42 | 4.10 | 3.44 | 0.913 |
| ILMN_3167583 | mmu-miR-490 | 261.17 | 352.21 | 307.58 | 390.17 | 422.08 | 588.42 | 0.68 | 0.09 | 0.126 |
| ILMN_3167912 | mmu-miR-501-3p | 99.83 | 112.00 | 399.79 | 508.71 | 234.42 | 1066.17 | 0.35 | 0.08 | 0.126 |
| ILMN_3168957 | mmu-miR-671-3p | 847.63 | 217.04 | 125.50 | 1398.75 | 3889.04 | 178.54 | 0.45 | 0.20 | 0.335 |
| ILMN_3168059 | mmu-miR-674 | 431.67 | 293.25 | 2402.46 | 655.58 | 89.54 | 88.46 | 10.36 | 8.43 | 0.433 |
| ILMN_3168270 | mmu-miR-674* | 82.96 | 68.54 | 330.96 | 2426.33 | 4164.88 | 69.58 | 1.60 | 1.58 | 0.245 |
| ILMN_3169119 | mmu-miR-744* | 5413.58 | 134.42 | 245.58 | 934.50 | 157.25 | 653.17 | 2.34 | 1.73 | 0.480 |
| ILMN_3167710 | mmu-miR-759 | 196.63 | 1023.17 | 2382.83 | 250.58 | 285.88 | 3380.38 | 1.69 | 0.95 | 0.854 |
| ILMN_3168479 | mmu-miR-760:9.1 | 786.08 | 616.96 | 75.54 | 87.38 | 80.08 | 2243.08 | 5.58 | 2.80 | 0.770 |

Table B1. -Continued

|  |  | LCA1 | LCA2 | LCA3 | RCA1 | RCA2 | RCA3 | LCA/RCA |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Illumina_ID | NAME | signal | signal | signal | signal | signal | signal | ratio | SEM | p-value |
| ILMN_3169124 | mmu-miR-872* | 1170.21 | 2083.71 | 2271.33 | 249.63 | 311.92 | 312.79 | 6.21 | 0.78 | 0.040 |
| ILMN_3168976 | mmu-miR-874 | 433.04 | 202.71 | 663.58 | 1048.04 | 245.50 | 311.71 | 1.12 | 0.52 | 0.751 |
| ILMN_3167447 | mmu-miR-9 | 426.00 | 4092.00 | 993.71 | 61.29 | 63.08 | 61.33 | 29.34 | 17.96 | 0.259 |
| ILMN_3169058 | mmu-miR-99b* | 166.50 | 81.88 | 586.96 | 743.08 | 82.21 | 608.13 | 0.73 | 0.25 | 0.402 |
| ILMN_3168979 | mmu-miR-105 | 275.25 | 309.33 | 265.96 | 345.17 | 402.50 | 488.00 | 0.70 | 0.08 | 0.113 |
| ILMN_3167116 | mmu-miR-302a | 265.21 | 288.33 | 271.08 | 363.29 | 387.96 | 589.17 | 0.64 | 0.09 | 0.143 |
| ILMN_3168071 | mmu-miR-450b-3p | 272.38 | 307.50 | 262.92 | 327.92 | 386.63 | 483.42 | 0.72 | 0.09 | 0.148 |
| ILMN_3168056 | mmu-miR-673-5p | 2440.25 | 93.29 | 89.08 | 2045.67 | 391.96 | 102.50 | 0.77 | 0.28 | 0.904 |
| ILMN_3167983 | mmu-miR-704 | 736.67 | 1343.13 | 199.54 | 225.13 | 250.08 | 395.54 | 3.05 | 1.41 | 0.335 |
| ILMN_3168106 | mmu-miR-764-5p | 161.71 | 164.67 | 1593.63 | 185.46 | 389.88 | 6239.08 | 0.52 | 0.18 | 0.392 |
| ILMN_3169016 | mmu-miR-877 | 2352.79 | 270.04 | 585.17 | 264.63 | 329.71 | 455.71 | 3.66 | 2.62 | 0.405 |
| ILMN_3167353 | mmu-miR-107 | 105.83 | 138.42 | 523.92 | 620.29 | 132.00 | 139.58 | 1.66 | 1.08 | 0.889 |
| ILMN_3169044 | mmu-miR-1193 | 198.63 | 78.00 | 1126.00 | 735.71 | 74.33 | 74.71 | 5.46 | 4.81 | 0.747 |
| ILMN_3168361 | mmu-miR-181a-1* | 97.75 | 62.21 | 571.54 | 869.96 | 65.96 | 64.67 | 3.30 | 2.78 | 0.832 |
| ILMN_3169070 | mmu-miR-183* | 265.75 | 320.38 | 271.75 | 325.79 | 400.17 | 442.08 | 0.74 | 0.06 | 0.093 |
| ILMN_3168073 | mmu-miR-186 | 182.29 | 194.88 | 452.96 | 208.71 | 236.33 | 2024.58 | 0.64 | 0.21 | 0.398 |
| ILMN_3168981 | mmu-miR-18b | 592.13 | 159.38 | 864.96 | 175.13 | 183.83 | 219.92 | 2.73 | 0.94 | 0.220 |
| ILMN_3167472 | mmu-miR-32 | 371.88 | 218.25 | 361.75 | 246.25 | 255.88 | 301.17 | 1.19 | 0.19 | 0.406 |
| ILMN_3167081 | mmu-miR-330* | 213.54 | 228.88 | 1038.75 | 833.83 | 281.63 | 318.50 | 1.44 | 0.92 | 0.971 |
| ILMN_3167584 | mmu-miR-351 | 161.92 | 174.92 | 807.79 | 494.50 | 202.29 | 202.38 | 1.73 | 1.14 | 0.795 |
| ILMN_3168477 | mmu-miR-381 | 101.08 | 1110.63 | 1658.96 | 265.46 | 119.08 | 130.50 | 7.47 | 3.68 | 0.257 |
| ILMN_3167820 | mmu-miR-409-3p | 504.88 | 60.00 | 638.17 | 62.17 | 60.46 | 73.04 | 5.95 | 2.49 | 0.190 |
| ILMN_3168962 | mmu-miR-423-5p | 101.42 | 752.13 | 663.58 | 108.21 | 122.00 | 139.54 | 3.95 | 1.56 | 0.192 |
| ILMN_3167383 | mmu-miR-431 | 508.38 | 152.08 | 786.88 | 152.54 | 159.17 | 170.08 | 2.97 | 1.07 | 0.217 |
| ILMN_3167973 | mmu-miR-433 | 100.21 | 651.67 | 364.17 | 115.46 | 123.25 | 134.75 | 2.95 | 1.28 | 0.256 |
| ILMN_3168193 | mmu-miR-433* | 349.92 | 295.79 | 263.50 | 330.08 | 356.71 | 532.63 | 0.79 | 0.16 | 0.353 |
| ILMN_3168187 | mmu-miR-450a-5p | 85.63 | 658.67 | 375.38 | 192.21 | 97.29 | 107.88 | 3.57 | 1.83 | 0.339 |
| ILMN_3167599 | mmu-miR-467b | 245.88 | 301.38 | 272.00 | 311.08 | 385.92 | 392.71 | 0.75 | 0.03 | 0.031 |
| ILMN_3167334 | mmu-miR-485* | 940.79 | 193.46 | 179.00 | 365.88 | 241.08 | 255.21 | 1.36 | 0.61 | 0.552 |
| ILMN_3167052 | mmu-miR-495 | 80.08 | 98.17 | 366.96 | 1149.42 | 100.67 | 100.92 | 1.56 | 1.07 | 0.578 |
| ILMN_3167017 | mmu-miR-500 | 290.63 | 458.25 | 417.88 | 117.88 | 107.42 | 122.54 | 3.38 | 0.52 | 0.035 |
| ILMN_3169118 | mmu-miR-503* | 1870.67 | 70.50 | 659.79 | 188.63 | 69.17 | 78.54 | 6.45 | 2.75 | 0.265 |
| ILMN_3168199 | mmu-miR-532-5p | 2933.79 | 93.88 | 1582.58 | 98.25 | 95.50 | 99.83 | 15.57 | 8.34 | 0.221 |
| ILMN_3167979 | mmu-miR-539 | 131.83 | 638.17 | 635.75 | 142.13 | 144.88 | 159.83 | 3.10 | 1.09 | 0.192 |
| ILMN_3167513 | mmu-miR-551b:9.1 | 170.38 | 832.04 | 286.50 | 187.63 | 196.54 | 196.33 | 2.20 | 1.03 | 0.363 |
| ILMN_3169046 | mmu-miR-669e | 3541.33 | 668.71 | 210.33 | 142.75 | 155.42 | 198.08 | 10.06 | 7.43 | 0.341 |
| ILMN_3169033 | mmu-miR-669i | 2345.17 | 50.83 | 49.00 | 266.25 | 443.92 | 49.04 | 3.31 | 2.76 | 0.540 |
| ILMN_3168011 | mmu-miR-672 | 175.75 | 163.46 | 4591.04 | 3220.42 | 184.38 | 196.67 | 8.10 | 7.63 | 0.856 |
| ILMN_3167845 | mmu-miR-677 | 90.17 | 94.96 | 1019.25 | 100.17 | 108.08 | 2444.38 | 0.73 | 0.16 | 0.413 |
| ILMN_3168148 | mmu-miR-713 | 988.58 | 118.83 | 601.63 | 123.00 | 133.50 | 146.54 | 4.34 | 2.07 | 0.229 |
| ILMN_3167900 | mmu-miR-715 | 629.75 | 205.21 | 220.42 | 189.83 | 224.08 | 571.25 | 1.54 | 0.90 | 0.928 |
| ILMN_3168502 | mmu-miR-718 | 283.50 | 387.33 | 258.63 | 328.13 | 381.38 | 476.71 | 0.81 | 0.14 | 0.334 |
| ILMN_3167961 | mmu-miR-764-3p | 50.08 | 219.96 | 51.33 | 283.71 | 843.96 | 1904.92 | 0.15 | 0.07 | 0.205 |
| ILMN_3168969 | mmu-miR-880 | 507.38 | 47.17 | 294.00 | 47.75 | 70.88 | 50.75 | 5.69 | 2.88 | 0.247 |
| ILMN_3169130 | solexa-1201-400 | 287.04 | 217.50 | 740.50 | 257.21 | 258.67 | 393.50 | 1.28 | 0.31 | 0.447 |
| ILMN_3169139 | solexa-2011-236 | 2148.33 | 67.08 | 63.71 | 2527.96 | 64.00 | 62.21 | 0.97 | 0.06 | 0.430 |
| ILMN_3169157 | solexa-5067-90 | 527.96 | 782.58 | 77.88 | 87.54 | 81.29 | 82.25 | 5.53 | 2.52 | 0.207 |
| ILMN_3169096 | mmu-miR-21* | 291.63 | 305.75 | 248.83 | 328.63 | 361.92 | 402.96 | 0.78 | 0.08 | 0.151 |
| ILMN_3168932 | mmu-miR-325 | 271.79 | 275.46 | 257.75 | 317.54 | 389.08 | 526.92 | 0.68 | 0.11 | 0.163 |
| ILMN_3169002 | mmu-miR-509-3p | 180.54 | 468.13 | 213.04 | 247.79 | 297.83 | 435.54 | 0.93 | 0.33 | 0.761 |
| ILMN_3169082 | mmu-miR-106b* | 47.75 | 1007.25 | 148.96 | 46.67 | 47.75 | 50.54 | 8.35 | 6.39 | 0.366 |
| ILMN_3169042 | mmu-miR-1191 | 570.04 | 83.96 | 80.63 | 86.79 | 87.08 | 92.88 | 2.80 | 1.88 | 0.441 |
| ILMN_3167099 | mmu-miR-130b | 171.50 | 1315.46 | 182.17 | 191.88 | 221.00 | 278.29 | 2.50 | 1.73 | 0.486 |
| ILMN_3169083 | mmu-miR-130b* | 118.63 | 128.50 | 124.04 | 129.67 | 144.17 | 947.38 | 0.65 | 0.26 | 0.404 |
| ILMN_3168348 | mmu-miR-133b | 256.88 | 276.75 | 250.42 | 290.46 | 367.04 | 434.21 | 0.74 | 0.09 | 0.144 |
| ILMN_3167823 | mmu-miR-135a | 413.88 | 194.75 | 211.88 | 237.04 | 221.33 | 505.13 | 1.02 | 0.39 | 0.760 |
| ILMN_3167624 | mmu-miR-136 | 102.50 | 407.42 | 112.63 | 114.79 | 104.58 | 122.88 | 1.90 | 1.00 | 0.466 |
| ILMN_3169063 | mmu-miR-136* | 99.54 | 1064.54 | 100.17 | 112.50 | 121.29 | 124.58 | 3.49 | 2.64 | 0.446 |
| ILMN_3168064 | mmu-miR-141 | 213.63 | 215.54 | 192.21 | 242.88 | 264.63 | 445.83 | 0.71 | 0.14 | 0.263 |
| ILMN_3169067 | mmu-miR-154* | 698.92 | 212.54 | 168.54 | 196.38 | 243.46 | 194.88 | 1.77 | 0.90 | 0.490 |
| ILMN_3169093 | mmu-miR-16* | 281.83 | 239.29 | 239.21 | 256.42 | 1641.67 | 308.04 | 0.67 | 0.28 | 0.406 |
| ILMN_3167529 | mmu-miR-183 | 215.25 | 236.42 | 185.00 | 1212.88 | 215.33 | 267.92 | 0.66 | 0.27 | 0.389 |
| ILMN_3167217 | mmu-miR-201 | 152.58 | 158.21 | 143.67 | 1387.29 | 169.58 | 169.67 | 0.63 | 0.26 | 0.405 |
| ILMN_3169075 | mmu-miR-203* | 369.79 | 141.75 | 167.21 | 164.17 | 158.33 | 394.92 | 1.19 | 0.55 | 0.927 |
| ILMN_3167091 | mmu-miR-205 | 136.67 | 146.54 | 143.25 | 155.96 | 1284.63 | 228.00 | 0.54 | 0.22 | 0.372 |
| ILMN_3167495 | mmu-miR-207 | 258.21 | 282.79 | 236.50 | 306.25 | 381.33 | 454.42 | 0.70 | 0.10 | 0.137 |
| ILMN_3169117 | mmu-miR-20b* | 279.25 | 189.13 | 305.75 | 132.79 | 143.33 | 198.50 | 1.65 | 0.23 | 0.076 |
| ILMN_3167457 | mmu-miR-24-1* | 60.63 | 725.33 | 202.75 | 61.00 | 56.08 | 60.92 | 5.75 | 3.65 | 0.316 |
| ILMN_3168926 | mmu-miR-290-3p | 139.79 | 152.21 | 134.21 | 149.17 | 3798.67 | 181.21 | 0.57 | 0.27 | 0.414 |
| ILMN_3167645 | mmu-miR-297b-5p | 619.54 | 199.00 | 198.63 | 196.58 | 240.88 | 241.67 | 1.60 | 0.78 | 0.543 |
| ILMN_3167235 | mmu-miR-302c* | 133.96 | 133.92 | 124.25 | 140.58 | 4760.21 | 167.58 | 0.57 | 0.28 | 0.416 |
| ILMN_3166938 | mmu-miR-322 | 118.04 | 1700.29 | 142.75 | 137.08 | 142.42 | 188.92 | 4.52 | 3.71 | 0.447 |
| ILMN_3167910 | mmu-miR-325* | 83.79 | 646.67 | 77.33 | 77.92 | 81.75 | 88.33 | 3.29 | 2.31 | 0.428 |
| ILMN_3169110 | mmu-miR-33* | 105.46 | 802.50 | 103.38 | 117.13 | 120.67 | 139.58 | 2.76 | 1.94 | 0.464 |
| ILMN_3168933 | mmu-miR-330 | 133.29 | 128.83 | 306.38 | 135.00 | 151.88 | 171.38 | 1.21 | 0.29 | 0.535 |
| ILMN_3168944 | mmu-miR-335-3p | 78.75 | 91.13 | 90.21 | 1727.25 | 155.33 | 123.17 | 0.45 | 0.21 | 0.389 |
| ILMN_3168937 | mmu-miR-341 | 345.33 | 119.63 | 108.38 | 136.38 | 131.88 | 148.71 | 1.39 | 0.57 | 0.576 |
| ILMN_3169081 | mmu-miR-34c* | 130.25 | 159.75 | 720.17 | 162.42 | 289.08 | 170.92 | 1.86 | 1.18 | 0.604 |
| ILMN_3167597 | mmu-miR-374* | 72.83 | 77.25 | 854.42 | 76.63 | 73.08 | 80.58 | 4.20 | 3.20 | 0.422 |
| ILMN_3167098 | mmu-miR-380-3p | 1205.04 | 84.42 | 80.58 | 84.75 | 87.58 | 99.29 | 5.33 | 4.44 | 0.434 |
| ILMN 3167050 | mmu-miR-452 | 120.54 | 131.71 | 125.42 | 1260.63 | 150.00 | 175.63 | 0.56 | 0.24 | 0.389 |
| ILMN_3166954 | mmu-miR-465a-5p | 304.79 | 234.54 | 210.08 | 278.67 | 286.75 | 395.46 | 0.81 | 0.16 | 0.372 |
| ILMN_3168990 | mmu-miR-466b-5p | 109.13 | 384.63 | 104.58 | 104.38 | 119.00 | 109.38 | 1.74 | 0.74 | 0.423 |
| ILMN_3169008 | mmu-miR-466d-5p | 3772.96 | 232.96 | 202.92 | 279.46 | 246.96 | 317.00 | 5.03 | 4.24 | 0.444 |
| ILMN_3169041 | mmu-miR-466j | 265.75 | 295.38 | 259.54 | 329.79 | 341.21 | 416.25 | 0.77 | 0.07 | 0.122 |
| ILMN_3167338 | mmu-miR-467a* ${ }^{*}$ mmu-miR-467d ${ }^{*}$,mmu-miR-467a*,mmu-miR-467d* | 76.75 | 76.67 | 1431.83 | 81.58 | 77.33 | 78.25 | 6.74 | 5.78 | 0.425 |
| ILMN_3168997 | mmu-miR-467c | 100.54 | 1476.75 | 83.42 | 63.46 | 61.29 | 78.96 | 8.91 | 7.59 | 0.406 |
| ILMN_3167917 | mmu-miR-471:9.1 | 135.50 | 102.29 | 109.12 | 113.00 | 103.29 | 1144.46 | 0.76 | 0.34 | 0.435 |
| ILMN_3167781 | mmu-miR-488* | 205.75 | 279.96 | 239.54 | 333.29 | 325.88 | 389.75 | 0.70 | 0.08 | 0.076 |
| ILMN_3167642 | mmu-miR-499 | 65.79 | 69.25 | 67.13 | 71.71 | 1852.67 | 80.08 | 0.60 | 0.28 | 0.417 |
| ILMN-3168526 | mmu-miR-501-5p | 53.63 | 53.83 | 55.67 | 55.25 | 533.75 | 56.83 | 0.68 | 0.29 | 0.419 |
| ILMN_3167125 | mmu-miR-505 | 99.29 | 89.17 | 83.50 | 88.71 | 5954.17 | 94.58 | 0.67 | 0.34 | 0.423 |
| ILMN_3167887 | mmu-miR-543 | 53.42 | 748.67 | 51.50 | 52.75 | 50.83 | 53.88 | 5.57 | 4.58 | 0.424 |
| ILMN_3169019 | mmu-miR-598 | 157.67 | 194.67 | 522.71 | 198.79 | 265.33 | 274.92 | 1.14 | 0.38 | 0.699 |
| ILMN-3169025 | mmu-miR-669g | 53.83 | 57.13 | 56.04 | 55.42 | 3752.42 | 58.83 | 0.65 | 0.32 | 0.422 |
| ILMN_3168082 | mmu-miR-676* | 65.08 | 68.25 | 985.00 | 67.92 | 72.21 | 71.17 | 5.25 | 4.30 | 0.427 |
| ILMN_3168248 | mmu-miR-696 | 1630.38 | 155.42 | 180.71 | 170.75 | 188.17 | 194.00 | 3.77 | 2.89 | 0.441 |
| ILMN_3167423 | mmu-miR-705 | 270.75 | 147.54 | 74.83 | 75.88 | 813.67 | 83.33 | 1.55 | 1.03 | 0.601 |
| ILMN_3168961 | mmu-miR-760 | 117.79 | 131.63 | 157.42 | 252.96 | 216.96 | 1727.17 | 0.39 | 0.15 | 0.345 |
| ILMN_3168397 | mmu-miR-801:9.1 | 80.96 | 91.29 | 1157.88 | 88.67 | 113.21 | 130.54 | 3.53 | 2.67 | 0.439 |
| ILMN_3168968 | mmu-miR-879 | 196.54 | 242.88 | 227.38 | 381.33 | 299.71 | 260.08 | 0.73 | 0.11 | 0.192 |

Table B1. -Continued

|  |  | LCA1 | LCA2 | LCA3 | RCA1 | RCA2 | RCA3 | LCA/RCA |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Illumina_ID | NAME | signal | signal | signal | signal | signal | signal | ratio | SEM | p-value |
| ILMN_3169128 | solexa-110-3896 | 178.33 | 188.25 | 164.17 | 208.54 | 198.58 | 479.04 | 0.72 | 0.19 | 0.352 |
| ILMN_3167930 | solexa-231-1844 | 835.54 | 110.04 | 104.04 | 119.79 | 120.13 | 128.58 | 2.90 | 2.04 | 0.451 |
| ILMN_3169143 | solexa-2402-197 | 150.38 | 150.50 | 136.46 | 812.33 | 173.00 | 178.42 | 0.61 | 0.21 | 0.368 |
| ILMN_3167725 | solexa-4179-110 | 190.63 | 110.96 | 833.83 | 99.38 | 97.25 | 102.96 | 3.72 | 2.20 | 0.345 |
| ILMN_3169154 | solexa-4327-106 | 65.25 | 69.54 | 67.04 | 66.17 | 2149.54 | 76.42 | 0.63 | 0.30 | 0.420 |
| ILMN_3169036 | mmu-miR-1188 | 114.17 | 127.04 | 117.50 | 150.00 | 157.71 | 304.54 | 0.65 | 0.13 | 0.241 |
| ILMN_3168921 | mmu-miR-125a-3p | 53.88 | 53.88 | 54.75 | 56.17 | 382.04 | 56.17 | 0.69 | 0.28 | 0.416 |
| ILMN_3169028 | mmu-miR-1-2-as | 149.63 | 162.33 | 154.17 | 189.46 | 191.67 | 311.96 | 0.71 | 0.11 | 0.208 |
| ILMN_3168356 | mmu-miR-290-5p | 268.58 | 284.46 | 228.92 | 328.38 | 328.17 | 367.42 | 0.77 | 0.07 | 0.110 |
| ILMN_3168420 | mmu-miR-429 | 271.92 | 308.04 | 226.83 | 337.04 | 359.42 | 304.25 | 0.80 | 0.03 | 0.013 |
| ILMN_3168664 | mmu-miR-431* | 134.46 | 70.71 | 70.88 | 314.29 | 69.21 | 72.79 | 0.81 | 0.19 | 0.421 |
| ILMN_3168954 | mmu-miR-450a-3p | 220.04 | 254.38 | 240.00 | 273.38 | 325.88 | 461.75 | 0.70 | 0.09 | 0.163 |
| ILMN_3168992 | mmu-miR-466e-5p | 256.92 | 271.21 | 251.67 | 313.83 | 343.63 | 430.04 | 0.73 | 0.07 | 0.115 |
| ILMN_3167855 | mmu-miR-467b* | 309.42 | 79.88 | 76.04 | 78.00 | 82.08 | 92.42 | 1.92 | 1.02 | 0.470 |
| ILMN_3169115 | mmu-miR-470* | 250.21 | 258.63 | 243.21 | 292.54 | 338.29 | 371.50 | 0.76 | 0.06 | 0.079 |
| ILMN_3169021 | mmu-miR-582-3p | 287.83 | 286.25 | 234.25 | 335.58 | 338.92 | 399.29 | 0.76 | 0.09 | 0.147 |
| ILMN_3168278 | mmu-miR-710 | 158.96 | 198.33 | 197.58 | 190.21 | 254.17 | 394.04 | 0.71 | 0.10 | 0.208 |
| ILMN_3168403 | mmu-miR-721 | 225.42 | 235.83 | 221.25 | 256.42 | 303.63 | 349.75 | 0.76 | 0.07 | 0.117 |
| ILMN_3168978 | mmu-miR-876-3p | 72.71 | 77.08 | 80.63 | 81.58 | 87.58 | 411.21 | 0.66 | 0.23 | 0.389 |

Table B2. miRNA expression profiles in mouse ligated carotid endothelium (LCA) and controlateral right carotid endothelium (RCA) at 48 hr post-ligation

| IIllumia_ID | NAME | LCA1 | LCA2 | LCA3 | LCA4 | LCA5 | LCA6 | RCA1 | RCA2 | RCA3 | RCA4 | RCA4 | RCA6 | LCARCA |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


|  | signal |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ILMN_3167971 mmu-let-7a | 12936.67 | 9184.083 | 13760.83 | 10428.17 | 11896.83 | 12936.67 | 12811.67 | 15395 | 17161.5 | 1800.25 | 16716.83 | 17505.17 |
| ILMN_3167970 mmu-let-7b | 23384.17 | 16401 | 25891.08 | 25463.42 | 23384.17 | 23985.08 | 28579.5 | 28579.5 | 28579.5 | 25463.42 | 27525.75 | 28579.5 |

ILMN_3167970 mmu-let-7b ILMN_3169089 mmu-let-7b ILMN_3167551 mmu-let-7d ILMN_3167347 mmu-let-7d ILMN_3167347 mmu-let-7d ILMN_3168365 mmu-let-7g
ILMN 3169053 mmu -let-7g ILMN_3169053 mmu-let-7g*
ILMN 3168316 mmu-let-7i ILMN_3167634 mmu-miR-100 ILMN_3168157 mmu-miR-101a:9.1 1 ILMN_3167231 mmu-miR-101b:9.1

ILMN_3167027 mmu-miR-103 ILMN_3168930 mmu-miR-106a ILMN_3168529 mmu-miR-106a:9.1 ILMN_3169105 mmu-miR-10a* ILMN_3169068 mmu-miR-10b ILMN_3169029 mmu-miR-1186 ILMN_3169030 mmu-miR-1187 ILMN_3169043 mmu-miR-1192 ILMN_3169049 mmu-miR-1195 ILMN_3168794 mmu-miR-1197 ILMN_3168389 mmu-miR-125b-5p ILMN_3167695 mmu-miR-126-3p ILMN 3168399 mmu-miR-126-5p ILMN 3168922 mmu-miR-128 ILMN_3167491 mmu-miR-128a:9.1 ILMN_3168183 mmu-miR-129-5p ILMN_3168497 mmu-miR-130a ILMN_3168212 mmu-miR-132 ILMN_3168314 mmu-miR-133a ILMN_3167661 mmu-miR-133a ILMN_3168348 mmu-miR-133b ILMN_3167874 mmu-miR-135 ILMN_3167501 mmu-miR-138 ILMN_3167136 mmu-miR-140 ILMN_3166958 mmu-miR-143 ILMN_3168030 mmu-miR-144:9.1 ILMN_3167456 mmu-miR-145 ILMN_3168483 mmu-miR-146a ILMN_3169120 mmu-miR-146b* ILMN_3167902 mmu-miR-149 ILMN_3168367 mmu-miR-151-3p ILMN 3168819 mmu-miR-151-5p ILMN 3167060 mmu-miR-15b ILMN_3167060 mmu-miR-15b ILMN_3167989 mmu-miR-16 ILMN 3167127 mmu-miR-181 ILMN 3169069 mmu-mir-181a ILMN_3169069 mmu-miR-181a-2* ILMN_3168257 mmu-miR-181b ILMN_3167755 mmu-miR-182 ILMN_3169070 mmu-miR-183* ILMN_3167152 mmu-miR-185 ILMN_3169071 mmu-miR-186* ILMN_3168167 mmu-miR-187 ILMN_3167745 mmu-miR-188-5p ILMN_3168282 mmu-miR-18a ILMN_3169094 mmu-miR-18a* ILMN_3167253 mmu-miR-191 ILMN_3169072 mmu-miR-191* ILMN_3167506 mmu-miR-192 ILMN 3168366 mmu-miR-193 ILMN 3169073 mmu -miR-193* ILMN 3168982 mmumir-193 ILMN_3168982 mmu-miR-193b ILMN_3167122 mmu-miR-194 ILMN 3167628 mmu-miR-196 ILMN_3167628 mmu-miR-196a ILMN_3167916 mmu-miR-196a* ILMN_3168308 mmu-miR-196b ILMN_3167104 mmu-miR-197 ILMN_3168924 mmu-miR-199a-3p, ILMN_3107976 mmu-miR-199a-5 ILMN_3167787 mmu-miR-19a ILMN_3167260 mmu-miR-19b ILMN_3168294 mmu-miR-200b ILMN_3169074 mmu-miR-200b* ILMN_3169108 mmu-miR-200c* ILMN_3169015 mmu-miR-208b ILMN_3167510 mmu-miR-20a ILMN_3169095 mmu-miR-20a* ILMN 3167333 mmu-miR-20b ILMN 3167371 mmu-miR-21 ILMN 3169096 mumenin ILMN_ 1697774 MMILMN_316826 ILMN_3168266 mmu-miR-211 ILMN_3167761 mmu-miR-212 ILMN_3167046 mmu-miR-214 ILMN_3167234 mmu-miR-215 ILMN_3167177 mmu-miR-216b ILMN_3169109 mmu-miR-218-2 ILMN_3167523 mmu-miR-219 \begin{tabular}{rrrrrrrrrrrr}
1009.083 \& 461.25 \& 594 \& 453.5 \& 453.5 \& 443.0833 \& 648.1667 \& 533.5 \& 332.0833 \& 773 \& 312.75 \& 426.25 <br>
\hline

 $\begin{array}{rrrrrrrrrrrr} \\ 16401 & 17505.17 & 19786 & 17505.17 & 19786 & 19786 & 17505.17 & 21350.83 & 18895.42 & 18895.42 & 15807.75 & 15100.5\end{array}$ $\begin{array}{rrrrrrrrrrrr}6534 & 7416.333 & 723 & 10534.83 & 9633 & 10534.83 & 10684.58 & 12251 & 13133.08 & 13760.83 & 12095.75 & 9871.417\end{array}$ $\begin{array}{lllllllllllll}131.917 & 1351.583 & 2006.667 & 1308.5 & 1018.333 & 1244.667 & 1912.583 & 165525 & 763.8333 & 1703.417 & 836.25 & 1351.583\end{array}$ 1373 $\begin{array}{llllrrrrrrrr}6873.917 & 8536.417 & 1137.167 & 11048.17 & 8653.917 & 7277.917 & 9871.417 & 10089.58 & 10428.17 & 6175.917 & 13760.83 & 12811.67 \\ 14561.83 & 17845.75 & 14561.83 & 14252.67 & 15100.5 & 15100.5 & 13665.33 & 8461.333 & 12656 & 13962.67 & 13133.08 & 10223.75\end{array}$ $\begin{array}{rrrrrrrrrrrr}14561.83 & 17845.75 & 14561.83 & 14252.67 & 15100.5 & 15100.5 & 13665.33 & 8461.333 & 12656 & 13962.67 & 13133.08 & 10223.75 \\ 198.9167 & 567.8333 & 218.6667 & 209.75 & 169 & 188.8333 & 214.6667 & 883.3333 & 272 & 4992.583 & 3532.167 & 6534\end{array}$ $\begin{array}{rrrrrrrrrrrrr}198.9167 & 567.8333 & 218.6667 & 209.75 & 169 & 188.8333 & 214.6667 & 883.3333 & 272 & 4992.583 & 3532.167 & 6534 \\ 2912.75 & 7111.083 & 7611 & 3419.333 & 277.5833 & 198.9167 & 198.9167 & 9871.417 & 6873.917 & 9184.083 & 4712.75 & 628.6667\end{array}$ $\begin{array}{rrrrrrrrrrrr}28579.5 & 28579.5 & 28579.5 & 28579.5 & 28579.5 & 28579.5 & 22194.33 & 22194.33 & 27087.58 & 27525.75 & 27087.58 & 27525.75 \\ 1070.583 & 979.5 & 1679.417 & 1137.167 & 1214.667 & 1182.333 & 1703.417 & 1538.583 & 783.8333 & 1912.583 & 683.8333 & 979.5\end{array}$ $\begin{array}{lrrrrrrrrrrr}1070.583 & 979.5 & 1679.417 & 1137.167 & 1214.667 & 1182.333 & 1703.417 & 1538.583 & 783.8333 & 1912.583 & 683.8333 & 979.5 \\ 293.6667 & 180.9167 & 344.75 & 272 & 203.5833 & 187.1667 & 265.1667 & 355.8333 & 205.1667 & 414.6667 & 222.9167 & 312.75\end{array}$ $\begin{array}{lrrrrrrrrrrr}414.6667 & 355.8333 & 1943.917 & 1368.417 & 1294.083 & 1117.667 & 2048.417 & 1506.5 & 648.1667 & 2227.667 & 410.75 & 603.1667\end{array}$ $\begin{array}{lllllllllllll}603.1667 & 344.75 & 628.6667 & 477.1667 & 369.25 & 414.6667 & 827.8333 & 586.0833 & 355.8333 & 661.5 & 576.5 & 863.9167\end{array}$ $\begin{array}{lllllllllllll}4647.833 & 268.5833 & 695.1667 & 4817.25 & 477.1667 & 1574.333 & 6093.417 & 12497.5 & 3850 & 671.25 & 3776.083 & 3776.083\end{array}$ $\begin{array}{llllllllllll}1117.667 & 172.8333 & 5646.75 & 3389.167 & 3389.167 & 1034.583 & 1655.25 & 307.8333 & 2559.167 & 1173.75 & 1278.083 & 4075.75\end{array}$ $\begin{array}{lllllllllllll}447.5833 & 559 & 1308.5 & 5198.25 & 815.3333 & 836.25 & 1538.583 & 918.5 & 334.9167 & 1329.583 & 361.75 & 671.25\end{array}$ $\begin{array}{llllllllllll}13665.33 & 13760.83 & 17845.75 & 18348.58 & 17161.5 & 16716.83 & 17161.5 & 15807.75 & 16716.83 & 15395 & 14252.67 & 16209.25\end{array}$ $\begin{array}{llllllllllll}1048.917 & 715.25 & 1351.583 & 827.8333 & 783.8333 & 1009.083 & 1450.5 & 1294.083 & 676.3333 & 1574.333 & 550.0833 & 908.8333\end{array}$ $\begin{array}{lllllllllllll}8221.333 & 9346.417 & 2120.25 & 6369.833 & 2867 & 6873.917 & 12656 & 8005.833 & 10534.83 & 4313.5 & 10223.75 & 13133.08\end{array}$ $\begin{array}{llllllllllll}6434.583 & 4712.75 & 7820.25 & 576.5 & 471.5 & 483.6667 & 893.75 & 676.3333 & 342 & 754.6667 & 329.0833 & 421.6667\end{array}$ $\begin{array}{lllllllllllll}13962.67 & 8394.833 & 15100.5 & 8816.583 & 13133.08 & 6746.5 & 26650.33 & 16209.25 & 21350.83 & 2912.75 & 28579.5 & 24957.08\end{array}$ $\begin{array}{rrrrrrrrrrrr} \\ 4347.25 & 4243.5 & 3389.167 & 268.5833 & 4075.75 & 405.3333 & 355.8333 & 277.5833 & 209.75 & 339.1667 & 209.75 & 290.5833\end{array}$ $\begin{array}{lllllllllllll}4322.792 & 6732.167 & 5200.25 & 5535.458 & 5341.708 & 6958.167 & 1032.417 & 2814.458 & 3950.917 & 2901.375 & 3897.583 & 3872.792\end{array}$ $\begin{array}{rrrrrrrrrrrr}4322.792 & 6732.167 & 5200.25 & 5535.458 & 5341.708 & 6958.167 & 1032.417 & 2814.458 & 3950.917 & 2901.375 & 3897.583 & 3872.792 \\ 695.1667 & 918.5 & 731.5833 & 648.1667 & 554.5 & 461.25 & 515.6667 & 773 & 586.0833 & 1117.667 & 559 & 1189.333\end{array}$ $\begin{array}{rrrrrrrrrrrrr} \\ 1480.333 & 1679.417 & 2699.75 & 1891.5 & 1800.25 & 1703.417 & 5752.583 & 2281.917 & 1117.667 & 3026 & 2730.417 & 7416.333\end{array}$ $\begin{array}{lrrrrrrrrrrr}1480.333 & 1679.417 & 2699.75 & 1891.5 & 1800.25 & 1703.417 & 5752.583 & 2281.917 & 1117.667 & 3026 & 2730.417 & 7416.333 \\ 332.0833 & 218.6667 & 613.3333 & 334.9167 & 342 & 339.1667 & 554.5 & 671.25 & 1390.25 & 544.25 & 3443.417 & 443.0833\end{array}$ $\begin{array}{rrrrrrrrrrrr}332.0833 & 218.6667 & 613.3333 & 334.9167 & 342 & 339.1667 & 554.5 & 671.25 & 1390.25 & 544.25 & 3443.417 & 443.0833 \\ 2317.417 & 1408.083 & 5427.667 & 3361.167 & 1943.917 & 783.8333 & 7190.917 & 3443.417 & 2006.667 & 1034.583 & 1635.083 & 2048.417\end{array}$ $\begin{array}{rrrrrrrrrrr}2317.417 & 1408.083 & 5427.667 & 3361.167 & 1943.917 & 783.8333 & 7190.917 & 3443.417 & 2006.667 & 1034.583 & 1635.083 \\ 661.5 & 471.5 & 676.3333 & 510.9167 & 436.5833 & 503.4167 & 849.1667 & 594 & 366.1667 & 806.8333 & 387.8333\end{array} 405.4333$ $\begin{array}{rrrrrrrrrrr}661.5 & 471.5 & 676.3333 & 510.9167 & 436.5833 & 503.4167 & 849.1667 & 594 & 366.1667 & 806.8333 & 387.8333 \\ 342 & 245 & 405.3333 & 254.4167 & 245 & 265.1667 & 339.1667 & 387.8333 & 224.5833 & 344.75 & 170.9167 \\ 216.8333\end{array}$ $\begin{array}{lrrrrrrrrrr}979.5 & 586.0833 & 1173.75 & 763.8333 & 676.3333 & 731.5833 & 1048.917 & 1034.583 & 576.5 & 1538.583 & 510.9167 \\ 937.1667\end{array}$ $\begin{array}{llllllllllll}613.3333 & 307.8333 & 524.1667 & 443.0833 & 366.1667 & 379.75 & 576.5 & 443.0833 & 254.4167 & 603.1667 & 220.4167 & 332.0833\end{array}$ $\begin{array}{llllllllllll}146.6667 & 3804.083 & 351.4167 & 329.0833 & 283.8333 & 383.1667 & 806.8333 & 979.5 & 2520.75 & 298.8333 & 4647.833 & 5752.583\end{array}$ $\begin{array}{llllllllllll}11743.58 & 15395 & 11283.75 & 16716.83 & 9871.417 & 14851.75 & 19786 & 13665.33 & 15395 & 16209.25 & 17845.75 & 15395\end{array}$ $\begin{array}{llllllllllll}2559.167 & 2754.917 & 2947.25 & 2162.667 & 2365.333 & 1891.5 & 2983.667 & 2404.333 & 1450.5 & 3119.333 & 1538.583 & 1968.583\end{array}$ $\begin{array}{llllllllllll}18348.58 & 17161.5 & 17505.17 & 19786 & 17845.75 & 16401 & 20911.25 & 17845.75 & 21755.67 & 21350.83 & 20911.25 & 20911.25\end{array}$ $\begin{array}{llllllllllll}628.6667 & 2983.667 & 265.1667 & 259.8333 & 3119.333 & 453.5 & 224.5833 & 318.6667 & 2867 & 467.4167 & 1294.083 & 4877.833\end{array}$ $\begin{array}{llllllllllll}344.75 & 648.1667 & 393.6667 & 290.5833 & 274.9167 & 304.25 & 414.6667 & 461.25 & 1538.583 & 443.0833 & 238.3333 & 293.6667\end{array}$ $\begin{array}{lllllllllllll}3361.167 & 6237.917 & 783.8333 & 1480.333 & 3776.083 & 4243.5 & 6369.833 & 510.9167 & 1968.583 & 715.25 & 1746.167 & 1009.083\end{array}$ $\begin{array}{lllllllllllll}11632.25 & 8005.833 & 11156.33 & 8310.833 & 7820.25 & 7111.083 & 5798.167 & 9286.417 & 9739.083 & 8653.917 & 12936.67 & 5646.75\end{array}$ $\begin{array}{llllllllllll}27087.58 & 26179.5 & 26650.33 & 27087.58 & 27525.75 & 27525.75 & 27087.58 & 27525.75 & 26650.33 & 28579.5 & 26179.5 & 26179.5\end{array}$ $\begin{array}{lllllllllllll}13760.83 & 10822.92 & 18348.58 & 15807.75 & 12251 & 17161.5 & 13133.08 & 18348.58 & 16209.25 & 8736.833 & 15100.5 & 17845.75\end{array}$ $\begin{array}{lllllllllllll}10534.83 & 14851.75 & 13133.08 & 14851.75 & 12095.75 & 15807.75 & 13364.42 & 14561.83 & 13665.33 & 14561.83 & 16209.25 & 11743.58\end{array}$ $\begin{array}{lllllllllllll}10534.83 & 14851.75 & 13133.08 & 14851.75 & 12095.75 & 15807.75 & 13364.42 & 14561.83 & 13665.33 & 14561.83 & 16209.25 & 11743.58\end{array}$ 

13364.42 \& 15807.75 \& 12656 \& 14561.83 \& 9346.417 \& 9184.083 \& 8736.833 \& 7064.083 \& 12497.5 \& 8095.417 \& 8310.833 \& 1912.583 <br>
\hline
\end{tabular} $\begin{array}{rrrrrrrrrrrr}13364.42 & 15807.75 & 12656 & 14561.83 & 12936.67 & 12095.75 & 9346.417 & 10684.58 & 10089.58 & 13364.42 & 12251 & 11283.75 \\ 773 & 1854.583 & 3970.25 & 849.1667 & 3026 & 763.8333 & 1278.083 & 964.4167 & 503.4167 & 1390.25 & 603.1667 & 783.8333\end{array}$ $\begin{array}{llrllllllllll}8536.417 & 7820.25 & 754.6667 & 497.0833 & 6237.917 & 2559.167 & 2067.5 & 815.3333 & 3443.417 & 5259.667 & 8005.833 & 8394.833\end{array}$ $\begin{array}{rrrrrrrrrrrr}268.5833 & 145.8333 & 280.1667 & 224.5833 & 214.6667 & 220.4167 & 298.8333 & 220.4167 & 159.4167 & 342 & 187.1667 & 283.8333\end{array}$ $\begin{array}{rrrrrrrrrrrr}426.25 & 230.1667 & 436.5833 & 369.25 & 304.25 & 277.5833 & 369.25 & 339.1667 & 320.5 & 576.5 & 355.8333 & 510.9167\end{array}$ $\begin{array}{lrrrrrrrrrrr}1506.5 & 1776 & 2227.667 & 1329.583 & 1173.75 & 2208.917 & 1891.5 & 1776 & 937.1667 & 2208.917 & 1070.583 & 1137.167\end{array}$ $\begin{array}{lrrrrrrrrrrr}165.5833 & 156.75 & 410.75 & 320.5 & 293.6667 & 293.6667 & 489.4167 & 286.8333 & 146.6667 & 361.75 & 156.75 & 188.8333\end{array}$ $\begin{array}{llllllllllll}3026 & 3254.25 & 4817.25 & 232.5833 & 191.4167 & 4209.083 & 318.6667 & 6534 & 149.1667 & 11156.33 & 863.9167 & 304.25\end{array}$ $\begin{array}{llllllllllll}248 & 334.9167 & 893.75 & 676.3333 & 1574.333 & 603.1667 & 1070.583 & 613.3333 & 283.8333 & 586.0833 & 178.0833 & 298.8333\end{array}$ $\begin{array}{llllllllllll}5150.25 & 11469 & 7713.917 & 10089.58 & 9739.083 & 7416.333 & 4556.833 & 7561.333 & 6369.833 & 4243.5 & 4556.833 & 8095.417\end{array}$ $\begin{array}{llllllllllll}559 & 8221.333 & 908.8333 & 6695.167 & 5427.667 & 5198.25 & 5427.667 & 5198.25 & 393.6667 & 5150.25 & 1703.417 & 471.5\end{array}$ $\begin{array}{llllllllllll}26650.33 & 27525.75 & 26179.5 & 27525.75 & 27087.58 & 27087.58 & 25463.42 & 27087.58 & 27525.75 & 27087.58 & 26650.33 & 27087.58\end{array}$ $\begin{array}{llllllllllll}510.9167 & 263.1667 & 620.6667 & 467.4167 & 431.5833 & 576.5 & 1189.333 & 783.8333 & 421.6667 & 3389.167 & 483.6667 & 763.8333\end{array}$ $\begin{array}{llllllllllll}5985.583 & 620.6667 & 1009.083 & 5798.167 & 908.8333 & 2606.083 & 7508.083 & 874.25 & 3254.25 & 1182.333 & 2317.417 & 567.8333\end{array}$ $\begin{array}{lllllllllllll}1746.167 & 6434.583 & 4313.5 & 9871.417 & 9286.417 & 9346.417 & 11896.83 & 7508.083 & 7508.083 & 13665.33 & 4313.5 & 7111.083\end{array}$ $\begin{array}{lllllllllllll}3655.333 & 3318.75 & 2208.917 & 7508.083 & 6746.5 & 3970.25 & 2606.083 & 7351.417 & 4992.583 & 7611 & 3730.333 & 5587.833\end{array}$

 $\begin{array}{lllllllllllll} & 6913.75 & 5985.583 & 8816.583 & 4075.75 & 6623.167 & 6695.167 & 4486.667 & 4031.417 & 5302.583 & 6237.917 & 4877.833 & 4031.417\end{array}$ $\begin{array}{lllllllllllll} & 693.6667 & 13085 & 477.1667 & 1278.083 & 2404.333 & 10089.58 & 6746.5 & 9346.417 & 3776.083 & 8310.833 & 6695.167 & 9286.417\end{array}$ $\begin{array}{llllllllllllll} & 9386.417\end{array}$ $\begin{array}{lrrrrrrrrrrr}7904.5 & 1244.667 & 9985.333 & 8536.417 & 6988.917 & 6913.75 & 9633 & 8873.167 & 4486.667 & 5752.583 & 5493.5 & 5493.5\end{array}$ $\begin{array}{lrrrrrrrrrrr} & 479.75\end{array}$ $\begin{array}{lrrrrrrrrrrr} & 18 & 511469 & 11048.17 & 4288.5 & 9346.417 & 1912.583 & 6175.917 \\ 576.5 & 387.8333 & 804.8333 & 559 & 510.9167 & 550.0833 & 453.5 & 503.4167 & 405.3333 & 863.9167 & 293.6667 & 477.1667\end{array}$ $\begin{array}{lllllllllllll}14252.67 & 11156.33 & 12936.67 & 9739.083 & 9184.083 & 7508.083 & 16209.25 & 13364.42 & 14851.75 & 12095.75 & 18895.42 & 9004.417\end{array}$ $\begin{array}{lrrrrrrrrrrr}5798.167 & 8873.167 & 3594 & 5111.333 & 8221.333 & 9286.417 & 12095.75 & 8736.833 & 9438.917 & 7190.917 & 12656 & 6623.167\end{array}$ $\begin{array}{rrrrrrrrrrrr}6369.833 & 6093.417 & 9286.417 & 8221.333 & 12497.5 & 11048.17 & 1968.583 & 9739.083 & 8310.833 & 12656 & 7904.5 & 11896.83 \\ 180.9167 & 209.75 & 232.5833 & 178.0833 & 170.9167 & 180.9167 & 293.6667 & 6988.917 & 187.1667 & 293.6667 & 221.3333 & 4817.25\end{array}$ $\begin{array}{lllllllllllll}4419.333 & 3492.75 & 3289.5 & 2208.917 & 4434.333 & 2520.75 & 3492.75 & 2912.75 & 2659.417 & 3318.75 & 979.5 & 1538.583\end{array}$ $\begin{array}{llllllllllll}1308.5 & 1173.75 & 1746.167 & 1214.667 & 1351.583 & 1308.5 & 2754.917 & 1943.917 & 1214.667 & 2659.417 & 1368.417 & 1746.167\end{array}$ $\begin{array}{lllllllllllll}671.25 & 458.75 & 979.5 & 715.25 & 628.6667 & 676.3333 & 1154.917 & 1048.917 & 524.1667 & 1137.167 & 431.5833 & 773\end{array}$ $\begin{array}{llllllllllll}620.6667 & 272 & 387.8333 & 280.1667 & 236.5833 & 214.6667 & 290.5833 & 304.25 & 214.6667 & 312.75 & 366.1667 & 436.5833\end{array}$ $\begin{array}{llllllllllll}849.1667 & 554.5 & 874.25 & 567.8333 & 503.4167 & 544.25 & 883.3333 & 836.25 & 453.5 & 731.5833 & 320.5 & 515.6667\end{array}$ $\begin{array}{lllllllllllll}1635.083 & 3419.333 & 2067.5 & 1263.167 & 1746.167 & 4947.75 & 2404.333 & 8653.917 & 4379.5 & 2281.917 & 3204.833 & 1480.333\end{array}$ $\begin{array}{lrrrrrrrrrrrr} \\ 9985.333 & 1746.167 & 9633 & 10684.58 & 10822.92 & 11632.25 & 15395 & 11156.33 & 11283.75 & 19786 & 9286.417 & 18348.58\end{array}$ $\begin{array}{lrrrrrrrrrrrr}9985.333 & 1746.167 & 9633 & 10684.58 & 10822.92 & 11632.25 & 15395 & 11156.33 & 11283.75 & 19786 & 9286.417 & 18348.58 \\ 1182.333 & 1137.167 & 1574.333 & 815.3333 & 2208.917 & 2436 & 1329.583 & 1679.417 & 893.75 & 1599.167 & 648.1667 & 1094.833\end{array}$ $\begin{array}{rrrrrrrrrrrr}1182.333 & 1137.167 & 1574.333 & 815.3333 & 2208.917 & 2436 & 1329.583 & 1679.417 & 893.75 & 1599.167 & 648.1667 & 1094.833 \\ 25463.42 & 23384.17 & 27087.58 & 24500.92 & 25891.08 & 24957.08 & 27525.75 & 25891.08 & 25463.42 & 20911.25 & 25891.08 & 23985.08\end{array}$ $\begin{array}{llllrlrlllll}25463.42 & 23384.17 & 27087.58 & 24500.92 & 25891.08 & 24957.08 & 27525.75 & 25891.08 & 25463.42 & 20911.25 & 25891.08 & 23985.08 \\ 230.1667 & 1154.917 & 849.1667 & 628.6667 & 576.5 & 489.4167 & 1034.583 & 603.1667 & 256.3333 & 1009.083 & 242.5833 & 361.75\end{array}$ $\begin{array}{rrrrrrrrrrrr}12656 & 9739.083 & 11632.25 & 12095.75 & 13665.33 & 11469 & 4243.5 & 7904.5 & 9184.083 & 6369.833 & 9871.417 & 9739.083\end{array}$ $\begin{array}{llllllllllll}318.6667 & 203.5833 & 458.75 & 361.75 & 383.1667 & 324.8333 & 544.25 & 6237.917 & 293.6667 & 483.6667 & 280.1667 & 393.6667\end{array}$ $\begin{array}{lrrrrrrrrrrr}12497.5 & 5646.75 & 9438.917 & 7820.25 & 8873.167 & 8736.833 & 12251 & 11632.25 & 9004.417 & 12251 & 7190.917 & 9985.333\end{array}$ $\begin{array}{rrrrrrrrrrrr}14851.75 & 10089.58 & 15395 & 13133.08 & 12811.67 & 10822.92 & 14252.67 & 10822.92 & 13760.83 & 14851.75 & 14851.75 & 9633 \\ 1137.167 & 1278.083 & 1854.583 & 1189.333 & 6093.417 & 1173.75 & 1854.583 & 1599.167 & 683.8333 & 2006.667 & 628.6667 & 1018333\end{array}$ $\begin{array}{lrrrrrrrrrrr}1137.167 & 1278.083 & 1854.583 & 1189.333 & 6093.417 & 1173.75 & 1854.583 & 1599.167 & 683.8333 & 2006.667 & 628.6667 & 1018.333 \\ 421.6667 & 216.8333 & 453.5 & 324.8333 & 329.0833 & 332.0833 & 524.1667 & 515.6667 & 351.4167 & 683.8333 & 393.6667 & 461.25\end{array}$ $\begin{array}{rrrrrrrrrrrr}421.6667 & 216.8333 & 453.5 & 324.8333 & 329.0833 & 332.0833 & 524.1667 & 515.6667 & 351.4167 & 683.8333 & 393.6667 & 461.25 \\ 383.1667 & 254.4167 & 483.6667 & 277.5833 & 290.5833 & 329.0833 & 567.8333 & 648.1667 & 344.75 & 489.4167 & 307.8333 & 339.1667\end{array}$ $\begin{array}{llllllllllllll}567.8333 & 372 & 763.8333 & 550.0833 & 497.0833 & 515.6667 & 937.1667 & 731.5833 & 426.25 & 964.4167 & 383.1667 & 559\end{array}$

Table B2．－Continued


|  | signal | ratio | SEM | p －va |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ILMN＿3167773 mmu－miR－22 | 2162.667 | 14561.83 | 2983.667 | 5752.583 | 5925.5 | 6988.917 | 4992.583 | 9438.917 | 12251 | 849.1667 | 11156.33 | 11156 | 1.69 | 1.03 | 0.455 |
| ILMN＿3167681 mmu－miR－221 | 54.583 | 366.1667 | 312.75 | 2281.917 | 50.5 | 2480.25 | 1746.167 | 3074 | 3903.917 | 3804.083 | 5925.5 | 3655.333 | 0.46 | 0.16 | 0.023 |
| MN＿3167963 mm | 9346.417 | 11743.58 | 70 | 11156.33 | 100 | 9004.417 | 4075.75 | 7190.917 | 8816.583 | 9985.333 | 9346.417 | 7820.25 | 1.35 | 0.22 | 0.141 |
| ILMN＿3166979 mmu－miR－223 | 15807.75 | 24957.08 | 21350.83 | 23985.08 | 24500.92 | 26179.5 | 11283.75 | 11743.58 | 11632.25 | 3254.25 | 9985.333 | 883.3333 | 7．47 |  | 0.005 |
| MN | 11 | 895 | 22751.92 | 21755.67 | 50.83 | 20911.25 | 25891.08 | 7．08 | 24957.08 | 22194.33 | 24957.08 | 24500.92 | 0.86 |  | 0.008 |
| ILMN＿3168211 mmu－m | 26179.5 | 27087.58 | 25463.42 | 65 | 26650.33 | 26650.33 | 26179.5 | 33 | 25891.08 | 26650.33 | 25463.42 | 25891.08 |  |  | ． 232 |
| ILMN＿3169098 mmu－miR－24－2 | 5302.583 | 12497.5 | 5985.583 | 6873.917 | 8095.417 | 8653.917 | 3970.25 | 585.5 | 6434.583 | 8221.333 | 5302.583 | 970.25 | 1.59 | 0.30 | ． 13 |
| ILMN＿3168476 mmu－miR－25 | 25891.08 | 25891.08 | 27525.75 | 26179.5 | 26179.5 | 25891.08 | 18348.58 | 26179.5 | 24500.92 | 26179.5 | 23985.08 | 22751.92 | 1.13 | 0.06 | 0． 074 |
| ILMN＿3168005 mmu－miR－26a | 5100 | 13133.08 | 13665.33 | 17161 | 13760.83 | 14561.83 | 17845.75 | 19786 | 18348.58 | 17505.17 | 22751.92 | 21755.67 | 0.75 | 0.06 | 0.011 |
| MN＿3167374 mmu－m | 4.8 | 4379.5 | 209.75 | 5371.667 | 3204.833 | 6791.75 | 12497.5 | 534. | 10 | 6534 | 11896.8 | 8461．333 | 0.50 | 0.13 | 0.018 |
| ILMN＿3168323 mmu－miR－27a | 24500.92 | 24500.92 | 24500.92 | 24957.08 | 23985.08 | 25463.42 | 23384.17 | 25463.42 | 26179.5 | 25891.08 | 24500.92 | 26650.33 | 0.97 | 0.02 | － |
| ILMN＿3169102 mmu－miR－27a＊ | 304.25 | 329.0833 | 773 | 524.1667 | 515.6667 | 533.5 | 1182.333 | 1480.333 | 304.25 | 827.8333 | 245 | 369.25 | 1.20 | 0.40 |  |
| －m | 11048.17 | 9985.333 | 4877.833 | 11743.58 | 9438.917 | 9438.917 | 2784.583 | 13760.83 | 12936.67 | 10684.58 | 13364.42 | 75 | 1.25 | 0.55 | 0 |
| ILMN＿3169055 mmu－miR－27b＊ | 3850 | 03.9 | 34.583 | 594 | 7611 | 238.33 | 471.5 | 290.58 | 294 | 7508.083 | 5868 | 4131.9 | 4.20 | 2.22 | 903 |
| MN＿3168514 mmu－miR－291a | 99.167 | 1891.5 | ． 25 | ． 58 | 1599.167 | 1294.083 | 99.167 | 1891.5 | 1278.083 | 2606.083 | ．66 | 1214.667 | ． 07 |  | 0.918 |
| MN＿3167737 mmu－miR－293 | 2784.583 | 3532.167 | 3532.167 | 2606.083 | 699.7 | 2754.91 | 3730.333 | 3119.333 | 1912.583 | 3730.333 | 1828.917 | 2120.25 | 1.20 | 0.18 | 0.601 |
| MN＿3169076 mmu－miR－293＊ | 477.1667 | 283.833 | 603.166 | 461.25 | 458.75 | 497.083 | 979.5 | 763.8333 | 3204.83 | 1214.667 | 497.0833 | 874.25 | 0.49 | 0.10 | 0.088 |
| LN＿3167957 mmu－m | 320.5 | 1.1 | 467.4167 | 312.75 | 332 | 274.9167 | 272 | 5.333 | 274.9167 | 383.1667 | 166.4167 | 151.9167 | 1.34 | 0.24 | 0.504 |
| mm | 1189.333 | 2067.5 | 3204.833 | 1154.917 | 1070.583 | 5587.833 | 1800.25 | 1308.5 | 620.6667 | 7561.333 | 676.3333 | 950.5833 | 2.50 | 0.98 | 0.888 |
| m | 4243.5 | 5427.667 | 4556.833 | 3776.083 | 4031.417 | 3389.167 | 4131.917 | 3776.083 | 2824.917 | 4288.5 | 3655.333 | 2659.417 | 1.22 | 0.11 | 7 |
| mmu－miR－297b－5 | 286.8333 | 178.0833 | 268.5833 | 221.3333 | 197.5833 | 194.8333 | 200.6 | 245 | 194.8333 | 351.4167 | 194.8333 | 209.75 | ． 02 |  | 7 |
| MN＿3168963 mmu－miR－297c＊， | 4075.7 | 175 | 5259.66 | 222.9167 | 937.166 | 5693.167 | 9184.083 | 4.6667 | 791. | 8461.333 | 3119.333 | 222.916 | 4.65 | 4.18 | 0.355 |
| MN＿3168928 mmu－miR－299 | 431.583 | 863.9167 | 1703.417 | 1294.083 | 1308.5 | 1202.583 | 1943.917 | 3 | 436.5833 | 1506.5 | 1009.083 | 613.3333 | 1.50 | 0.54 | 0.963 |
| MN＿3169100 mmu－miR－29a＊ | 1278.083 | 1294.08 | 1828.917 | 120 | 115 | 12 | 1679.417 | 1429.75 | 671.25 | 1655.25 | 695.1667 | 1034.583 | 1.33 | 0.31 | 0.612 |
| ILMN＿3167643 mmu－mir－29c | 74.2 | 4777.167 | 1189.333 | 754.6667 | 849.166 | 723 | 8653.917 | 34.583 | 1599.167 | 1408.083 | 3.3333 | 7508.083 | 0.60 | 0.20 | 0.104 |
| MN＿3168040 mmu－miR－302c | 836.25 | 594 | 918.5 | 613.3333 | ． 4 | 586.0833 | 918.5 | 1137.167 | 544.25 | 0.666 | 172.8333 | 351.4167 | 1.41 | 0.32 | 0.757 |
| 5 mm | 11896.83 | 20911.25 | 6695.167 | 9346.417 | 10684.58 | 11896.83 | 116 | 8536.417 | 15100.5 | 12497.5 | 13665.33 | 10534.83 | 1.10 | 0.29 | 0.976 |
| mn | 13133.08 | 21350.83 | 14851.75 | 13760.83 | 16401 | 13133.08 | 16401 | 16716.83 | 17845.75 | 11743.58 | 18348.58 | 13665.33 |  |  | 5 |
| m | 236 | 2912.75 | 3074 | 2227.667 | 2162.667 | 2317.417 | 3389.167 | 2659.417 | 1351.583 | 3204.833 | 1189.333 | 1891.5 |  |  | 26 |
| ILMN＿3167711 mmu－miR－30e＊ | 4313.5 | 5071.25 | 6237.917 | 7416.333 | 3074 | 3532.167 | 5985.583 | 6369.833 | 7111.083 | 8005.833 | 6873.917 | 5198.25 |  |  | 0.016 |
| ILMN＿3167828 mmu－miR－31＊ | 298 | 49 | 1429.75 | 990 | 893.75 | 1048.917 | 1614.25 | 1070.583 | 329.0833 | 1480.333 | 256.3333 | 387.8333 | 1．98 |  | 0．993 |
| MN＿3167403 mmu－m | 12811.6 | 12095.7 | 16401 | 153 | 15395 | 1750 | 6.41 | 14851.75 | 17505.17 | ． 58 | 21755.67 | 25463.42 | 0.89 | 0.10 | 0.136 |
| MN＿3167956 mmu－mir－323－3 | 0.5 | 874.25 | 1329.5 | 3.916 | 648.166 | 671.25 | 1018.333 | 849.166 | 489. | 070．58 | 620.666 | 849.1667 | 1.22 | 0.30 | 3 |
| MN＿3168413 mmu－m | 9286.417 | 14252.67 | 12497.5 | 12811.67 | 14252.67 | 14252.67 | 6534 | 7611 | 102 | 71.2 | 34. | 6237.91 | 1.78 | 0.22 | 4 |
| LN＿3167905 mm | 17505.17 | 12656 | 13962.67 | 15100.5 | 16716.83 | 16209.25 | 8.9 | 4.8 | 128 | 16401 | 128 | 13962.6 | 31 | 0.14 | 0.065 |
| MN＿3168198 mm | 21755.67 | 22751.92 | 23384.1 | 22751.92 | 22751.92 | 22751.92 | 16716.83 | 21755.67 | 23384.17 | 23384.1 | 21350.83 | 4.33 |  |  | 0.193 |
| m | 489.4167 | 1614.25 | 1048.917 | 1679.417 | 695.1667 | 990.3333 | 1244.667 | 567.8333 | 2120.25 | 836.25 | 1854.583 | 458.75 |  |  | 8 |
| ILMN＿3167996 mmu－miR－335－5p | 918.5 | 1182.333 | 1154.917 | 1094.833 | 1117.667 | 1154.917 | 1214.667 | 1703.417 | 1202.583 | 2120.25 | 964.4167 | 964.4167 |  |  |  |
| mmu－n | 3594 | 4585.5 | 4031.417 | 3254.25 | 3361.167 | 3204.833 | 4313.5 | 3730.333 | 2754.917 | 4209.083 | 3163.833 | 2784.583 |  |  | 0.637 |
| mmu－m | 1538.583 | 9004.417 | 6175.917 | 918.5 | 5693.167 | 1070.583 | 613.3 | 715.25 | 410.75 | 893.75 | 43 | 6.8333 | 5.64 | 2.61 | 0.102 |
| 3 mmu －m | 723 | 4131.917 | 25 | 4585.5 | 1137.167 | 5071.25 | 1828.917 | 3970.25 | 2436 | 1368.417 | 342 | 594 | 2.89 | 1.25 | 4 |
| ILMN＿3168301 mmu－m | 7416.333 | 6873.917 | 583 | 6175.917 | 3970.25 | 8816.583 | 661.5 | 4992.583 | 2404.333 | 5868 | 67.5 | 093.417 | 3.20 | 1.61 | 7 |
| ILMN＿3166998 mmu－m | ．833 | 3.833 | 1070.583 | ． 08 | 5.3 | 436.5833 | 559 | 661.5 | 5.6667 | 1048.917 | 75.75 | 302.583 |  | 0.28 | 0.368 |
| MN＿3168866 mm | 191.4167 | 1018.333 | 230.1667 | 188.8333 | 178.0833 | 200.6667 | 286.8333 | 241.1667 | 164 | 369.25 | 267.3333 | 383.1667 | 1.33 | 0.59 | 0.756 |
| m | 2281.917 | 3026 | 2867 | 2048.417 | 1854.583 | 1655.25 | 2730.417 | 2208.917 | 94.083 | 2867 | 1891.5 | 1776 |  |  |  |
| ILMN＿3168165 mmu－miR－342－3 | 8095.417 | 12251 | 5752.583 | 11469 | 13364.42 | 9871.417 | 2912.75 | 2699.75 | 8461.333 | 2480.25 | 7277.917 | 6434.583 | 67 |  | 8 |
| ILMN＿3167891 mmu－miR－344 | 26 | 2317 | 8095.417 | 5925.5 | 3443.417 | 7561.333 | 8461.333 | 8816.583 | 3804.083 | 6434.583 | 5150.25 | 3653.917 |  |  | 0.293 |
| mmu －m | 1294.083 | 1390.25 | 5493.5 | 1506 | 883.3333 | 1094.833 | 1776 | 1574.333 | 849.1667 | 1968.58 | 2606.083 | 5427.667 |  |  | 0.737 |
| ILMN＿3168128 mmu－miR－345－5 | 1891.5 | 04．33 | 71.25 | 4739.917 | 2730.417 | 18．7 | 43.0833 | 3655.333 | 1828.917 | 1308 | 1408.083 | 2730.417 | 2.41 | 0.57 | 5 |
| ILMN＿3167734 mmu－miR－346 | 19786 | 59.16 | 52.6 | 3.167 | 8310.833 | 11156.33 | 12936.67 | 12656 | 9286.41 | 17845.75 | 8873.167 | 16401 |  | 0.22 | 8 |
| MN＿3168429 mm | 355.8333 | 436.583 | 3163.833 | 3804.083 | 671.25 | 344.75 | 594 | 87.833 | 2699.75 | 583 | 1655.25 | 0.0833 | 0.60 | 0.15 | 5 |
| m | 280.1667 | 893.75 | 256.3333 | 214.6667 | 5587.833 | 594 | 203.5833 | 272 | 259.8333 | 421.6667 | 200.6667 | 265.1667 | 6.04 | 4.38 | 0.292 |
| m | 307.8333 | 290.5833 | 355.8333 | 351.4167 | 312.75 | 2983.66 | 410.75 | 4877.833 | 4647.833 | 567.8333 | 773 | 524.1667 |  | 0.89 | 0.330 |
| m | 185.3333 | 220.4167 | 661.5 | 515.6667 | 524.1667 | 467.4167 | 964.4167 | 489.4167 | 232.5833 | 628.6667 | 180.9167 | 7.8333 |  |  | 0.843 |
| 318 | 324.8333 | 304.25 |  | 298 | 272 | 4131.91 | 483.6667 | 486 | 5587.833 | 554.5 | 6988.917 | 467.4167 |  |  | 0.235 |
| ILMN＿3167229 mmu－miR－375 | 586.083 | 14.66 | 3026 | 5646.7 | 2．33 | 50.2 | 62.6 | 12. | 4556.833 | 891 | 1943.9 | ． 83 |  |  | 0.918 |
| ILMN＿3168505 mmu－miR－376a | 815.3333 | 443.0833 | 836.25 | 3.1667 | 567.8333 | 567.833 | 10089.58 | 576.5 | 5493.5 | 815.3333 | 344.75 | 533.5 |  | 0.24 | 0.200 |
| ILMN＿3167566 mmu－miR－376 | 893. | 2784.58 | 990.333 | 83.333 | 1094.83 | 863.916 | 1117.667 | 1009.083 | 3730.333 | 1614.25 | 783.8333 | 918.5 | 1.12 |  | 5 |
| ILMN＿3167443 mmu－mir－379 | 63.167 | 6.2 | 506 | 1117.667 | 034．58 | 893 | 根．0 | ． 25 | 836.2 | 2048.417 | 893.75 | 1294.083 | 0.95 | 0.19 | 6 |
| ILMN＿3167239 mmu－m | 6695.167 | 7561.333 | 188.8333 | 8461.33 | 8394.833 | 9633 | 7713.917 | 1173.75 | 5798.167 | 9739.083 | 9.58 | 8221.333 | 1.70 | 0.96 | 1 |
| 113 mm | 461.25 | 161.3333 | 263.166 | 220.4167 | 185.3333 | 2097 | 274.9167 | 263.1667 | 197.5833 | 277.5833 | 1329.583 | 272 |  |  |  |
| MN＿3168062 mmu－miR－411＊：9， | 5493.5 | 2606.083 | 2784.583 | 19 | 2120.25 | 2067.5 | 2947.25 | 2365.333 | 1368.417 | 3.833 | 1244.667 | 2067.5 |  |  | 76 |
| ILMN＿3167373 mmu－m | 2095.75 | 162 | 133 | 星 | 龶 | 1265 |  | 6093.417 |  | 1048.17 | 1.333 | 6695.167 |  |  |  |
| ILMN＿3168947 mmu－miR－425 | 471 | 510.916 | 1614.2 | 1182.33 | 990.33 | 1137.16 | 2120.2 | 1408 | 353 | 1635.08 | 334 | 695.1667 |  |  | 0.201 |
| ILMN＿3168193 mmu－miR－433＊ | 232.5833 | 198.916 | 97.083 | 366.1667 | 344.75 | 334.9167 | 533 | 366.16 | 172.833 | 461. | 148.58 | 218.6667 | 1.42 | 0.41 | 0.905 |
| ILMN＿3168954 mmu－miR－450a－3 | 533.5 | 277.583 | 50.083 | 387.8333 | 355.8333 | 342 | 283.833 | 393.666 | 318.666 | 783.8333 | 241.1667 | 414.6667 | 1.18 | 0.24 | 0.986 |
| ILMN＿3167614 mmu－miR－451 | 8310.833 | 665.3 | 3.416 | 776 | 372 | 434.58 | 202.58 | 18895.42 | 11743.58 | 10534.83 | 6237.917 | 8536.417 | 1.44 | 1.10 | 0.158 |
| ILMN＿3167131 mmu－miR－45 | 245 | 483.6667 | 29.0833 | 342 | 318.66 | 86．833 | 6695.1 | 36．58 | 286.8333 | 524.166 | 298.833 | 431.5833 | 0.78 | 0.17 | ． 34 |
| ILMN＿3167714 mmu－miR－455＊ | 2. | ． 83 | 1599.16 | 48.9 | 979.5 | 1018.333 | 1429.75 | 1368 | 723 | 177 | 827.8333 | 1244.667 |  | 0.24 | 0.761 |
| ILMN＿3168948 mmu－m | 267.3333 | 221.3333 | 533. | 3.1 | 51.416 | 66.16 | 676.333 | 458.75 | 24 | 515.666 | 318.66 | 355.8333 |  |  | 0.484 |
| ILMN＿3167236 mmu－miR－465a－3p， | 754.6667 | 773 | 1538.58 | 64.416 | 806.833 | 874.25 | 1308.5 | 37.1667 | ． 4167 | 950.5833 | 274.91 | 410.75 |  |  |  |
| ILMN＿3168989 mmu－miR－465 | 731.5833 | 576. | 1202.583 | 1538.583 | 15. | 918 | 1506. | 1189.333 | 594 | 1450 | 567.8333 | 1048.917 | 1.03 |  | 0.615 |
| ILMN＿3167875 mmu－miR－466a－3p， | 1329.583 | 450.5 | 2281.917 | 50.5 | 492.75 | 1263.16 | 1635.08 | 746.167 | 4585.5 | 2404.333 | 6093.417 | 5925.5 | 0.59 |  | 043 |
| ILMN＿3168949 mmu－miR－466a－5p | 3289.5 | 3850 | 3361.167 | 2436 | 2436 | 2227.667 | 3204.833 | 2867 | 1679.417 | 3289.5 | 2006.667 | 2162.667 | 1.23 | 0.18 | 0.312 |
| ILMN＿3168991 mmu－miR－466c－5 | 1943.917 | 1968.583 | 298.8333 | 234.75 | 429.7 | 559 | 4379.5 | 344.7 | 277.5833 | 4739.917 | 2699.7 | 256.3333 | 1.67 | 0.86 | 0.296 |
| ILMN＿3169037 mmu－miR－466f | 4209.083 | 4647.833 | 4379.5 | 3163.833 | 4817.25 | 4347.25 | 4031.417 | 3594 | 2048.417 | 3970.25 | 3419.333 | 2227.667 | 1.4 | 0.21 | 0.085 |
| ILMN＿3168994 mmu－miR－466f－3p | 4817.25 | 198.25 | 7277.917 | 10223.75 | 7416.333 | 8536.417 | 14561.83 | 12811.67 | 4031.417 | 10089.58 | 9438.917 | 10684.58 | 0.8 | 0.22 | 0.187 |
| ILMN＿3168993 mmu－miR－466f－5p | 寿8．166 | 431.5833 | ． 3333 | 554. | 483.666 | ． 91 | 63．833 | 754.66 | 458.7 | 874.25 | 372 | 3.6667 |  |  | ． 701 |
| MN＿3168996 mmu－m | 11283.75 | 8736.833 | 372 | 4992.583 | 8816.58 | 7611 | 4647.833 | 361.75 | 3655.33 | 2784.583 | 76 | 4434.333 |  |  | 0.130 |
| ILMN＿3169027 mmu－m | 5259.66 | 1635.08 | 36.833 | 1225 | 8005.833 | 985.33 | 14851.7 | 14252.67 | 5925 | 5111.333 | 7416.333 | 2.25 | 1.05 | 0.34 | 0.503 |
| ILMN＿3169023 mmu－miR－4661 | 458.75 | 312.75 | 510.9167 | 405.3333 | 405.3333 | 361.75 | 497.0833 | 695.1667 | 461.25 | 1018.333 | 489.4167 | 723 | 0.70 | 0.12 | 0． 070 |
| ILMN＿3168950 mmu－miR－467a | 1912.583 | 2480.25 | 2162.667 | 1408.083 | 1189.333 | 1538.583 | 3361.167 | 2227.667 | 1329.583 | 2436 | 1214.667 | 800.25 | 0.9 | 0.16 | 0.45 |
| ILMN＿3169022 mmu－miR－467e | 863.9167 | 613.3333 | 1034.583 | 2480.25 | 594 | 648.1667 | 1009.083 | 1244.667 | 628.6667 | 990.3333 | 421.6667 | 372 | 1.4 | 0.29 | 0.407 |
| ILMN＿3169039 mmu－miR－467f | 2606.083 | 4075.75 | 6746.5 | 6791.75 | 7508.083 | 6237.917 | 8221.333 | 5150.25 | 2227.667 | 6873.917 | 2404.333 | 4288.5 | 1.62 | 0.48 | 0.643 |
| ILMN＿3169048 mmu－miR－467h | 2048.417 | 2006.667 | 2659.417 | 1655.25 | 1480.333 | 1480.333 | 2227.667 | 1968.583 | 1094.833 | 2559.167 | 1018.333 | 1703.417 | 1.22 | 0.26 | 0.725 |
| ILMN＿3168457 mmu－miR－484 | 15395 | 16716.83 | 17161.5 | 16209.25 | 17505.17 | 18895.42 | 8536.417 | 12936.67 | 13962.67 | 17161.5 | 12497.5 | 12656 | 1.36 | 0.12 | 0.017 |
| ILMN＿3167240 mmu－miR－486 | 22194.33 | 23985.08 | 24957.08 | 22194.33 | 22194.33 | 23384.17 | 4500.92 | 24500.92 | 23985.08 | 23985.08 | 19786 | 19786 | 1.0 | 0.04 | 0.69 |
| ILMN＿3167805 mmu－miR－487b | 222.9167 | 293.6667 | 648.1667 | 483.6667 | 447.5833 | 447.5833 | 723 | 383.1667 | 175 | 405.3333 | 127.0833 | 234.75 | 1.90 | 0.58 | 0.583 |
| ILMN＿3168506 mmu－miR－489 | 4777.167 | 5532 | 5198.25 | 4712.75 | 5371.667 | 4739.917 | 4947.75 | 4434.333 | 3419.333 | 4817.25 | 4777.167 | 3318.75 | 1.21 | 0.09 | 0.066 |
| ILMN＿3167583 mmu－miR－490 | 366.1667 | 324.8333 | 559 | 458.75 | 559 | 754.6667 | 1137.167 | 893.75 | 550.0833 | 1244.667 | 232.5833 | 320.5 | 1.14 | 0.41 | 0.36 |
| ILMN＿3167553 mmu－miR－491 | 369.2 | 265.166 | 447.583 | 339.166 | 265.166 | 256.333 | 351.4167 | 254.416 | 180.916 | 379.7 | 265.1667 | 241.1667 | 1.25 | 0.2 | 0.3 |

Table B2. -Continued


|  | signal | signa | ratio | SEM | -va |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ILMN_3168999 mmu-miR-493 | 259.8 | 170.9 | 366.1 | 283.8 | 254 | 298.8 | 393 | 351.4 | 198 | 918.5 | 254. | 232 | 0.93 | 0.23 | 49 |
| ILMN_3168446 mmu-miR-494 | 550.0833 | 369.25 | 950.5833 | 620.6667 | 60 | 661.5 | 2208.917 | 1154.917 | 815.3333 | 1351.583 | 908.8333 | 1182.333 | 0.57 | 0.13 | 0.046 |
| ILMN_3169000 mmu-miR-504 | 23985.08 | 4992.583 | 8394.833 | 2317.417 |  | 4817.25 | 11743.58 | 2784.583 |  | 5925.5 | 2281.917 | 8736.833 | 2.17 | 0.73 | 0. 284 |
| ILMN_3169017 mm | 1351 | 2824 | 413 | 3532 | 3730.333 | 2912 | 25 | 3361.167 | 1154.917 | 3655.333 | 990 | 1655.25 | 1.86 | 0.61 | 0.707 |
| ILMN_3168686 mmu-miR-532-3p | 908.8333 | 477.1667 | 1278.083 | 908.8333 | 731.5833 | 849.1667 | 2436 | 1329.583 | 754.6667 | 1854.583 | 1034.583 | 1506.5 | 0.70 | 0.21 | 0.077 |
| ILMN_3167658 mmu-miR-540-3p | 676.3333 | 393.6667 | 5925.5 | 426.25 | 387.8333 | 372 | 603.1667 | 497.0833 | 361.75 | 5798.167 | 2867 | 489.4167 | 3.21 | 2.64 | 0.794 |
| ILMN_3167074 mmu-miR-542-3p | 54.25 | 4031.417 | 3492.75 | 2559.167 | 2281.917 | 62.667 | 89.5 | 2824.917 | 03. | 3443.417 | 2559.167 | 2281.917 | 1.17 | 0.20 | 0.526 |
| ILMN_3167043 mmu-miR-546 | . 33 | 6.3 | 8.3 | 731.583 | 667 | 5985.583 | 908 | 806. | 1480.3 | 1189.3 | 379.75 | 4347.25 | 1.04 | 0.16 | 0.654 |
| ILMN_3168117 mmu-miR-547 | 179.0833 | 143.6667 | 259.8333 | 227 | 21 | 241.1667 | 426.25 | 329.0833 | 227 | 372 | 290.5833 | 268.5833 | 0.71 | 0.11 | 0.052 |
| ILMN_3167513 mmu-miR-551b:9 | 188.8333 | 159.4167 | 245 | 241.1667 | 248 | 234.75 | 267.3333 | 372 | 298.8333 | 426.25 | 283.8333 | 245 | 0.73 | 0.08 | 0.037 |
| ILMN_3169004 mmu-miR-574-3p | 17845.75 | 18348.58 | 18895.42 | 18895.42 | 8.58 | 17845.75 | 13962.67 | 13962.67 | 16401 | 15100.5 | 15395 | 51.75 | . 23 | 0.02 | 0.000 |
| ILMN_3169003 mmu-miR | 5693.167 | 1538.5 | 4075.75 | 4777 | 5752 | 5427.667 | 7820.25 | 7111.083 | 6913.75 | 7064.083 | 7351.417 | 8310.833 | 0.61 | 0.08 | 0.004 |
| ILMN_3169020 mmu-miR-582-5p | 1450.5 | 1263.167 | 1968.583 | 1390.25 | 1278.083 | 1390.25 | 2559.167 | 1854.583 | 950.5833 | 2365.333 | 849.1667 | 1368.417 | 1.07 | 0.25 | 82 |
| ILMN_3167257 mmu-miR-592 | 5427.667 | 5798.167 | 4947.75 | 4313.5 | 4877.833 | 4031.417 | 4585.5 | 4131.917 | 3492.75 | 4556.833 | 4947.75 | 3389.167 | 1.19 | 0.08 | 0.073 |
| ILMN_3167379 mmu-miR-615-3p | 5752.583 | 6534 | 5150.25 | 4556.833 | 5259.667 | 4647.833 | 4877.833 | 4556.833 | 4131.917 | 4947.75 | 4992.583 | 3594 | 1.19 | 0.0 | 0.058 |
| 3168964 mmu-miR-615-5p | 277.583 | 524.1667 | 567.833 | 695.16 | . 33 | 773 | 68.583 | 265.166 | 0.91 | 221.333 | 175 | . 3333 | 2.64 | 0.39 | 0.006 |
| 3167305 m | 9438.917 | 10223.75 | 8461.333 | 9633 | 11156.33 | 8461.333 | 1351.583 | 7713.917 | 8095.417 | 7904.5 | 8816.583 | 10089.58 | 2.11 | 0.98 | 0.154 |
| ILMN_3168475 mmu-miR-654-3p | 7713.917 | 783.8333 | 1117.667 | 1968.583 | 6369.833 | 4434.333 | 3804.083 | 5071.25 | 7351.417 | 2520.75 | 4131.917 | 5798.167 | 0.90 | 0.31 | 0.532 |
| m | 783.8333 | 603.1667 | 1214.667 | 783.8333 | 754.6667 | 806.8333 | 1263.167 | 1117.667 | 554.5 | 6791.75 | 477.1667 | 661.5 | 1.04 | 0.31 | 0.378 |
| ILMN_3167968 mmu-miR-667 | 3804.083 |  |  | 4947.75 | 1655.25 | 4712.75 | 4712.75 | 333 | 471.5 | 410.75 | 5427.667 | 5371.667 |  | 3.61 | 0.550 |
| ILMN_3167115 m | 1703.417 | 833 | 554.5 | 6.53 | 426.25 | 3443.417 | 71.25 | 833 | 1655.25 | 503.4167 | 159.4167 | 263.1667 | 3.34 | 1.99 | 0.431 |
| ILMN_3166951 mmu-miR-669c | 3730.33 | 2659.417 | 4712.75 | 7713. | 428 | 2699.75 | 7064.08 | 8095.417 | 790 | 6746.5 | 10822.92 | 2520.75 | 0.68 | 0.14 | 0.063 |
| ILMN_3169035 mmu-miR-669h-3 | 256.3333 | 188.8333 | 421.6667 | 355.8333 | 307.8333 | 307.8333 | 436.583 | 342 | 238.3333 | 477.1667 | 216.8333 | 334.9167 | 1.00 | 0.20 | 0.5 |
| 3168279 mmu-miR-676 | 5646.75 | 3.1 | 11.33 | 4347.25 | 5071.25 | 549 | 5371.667 | 47.25 | 359 | 77.83 | 4434.333 | 83.667 | 1.31 | 0.14 | 0.0 |
| MN_3167520 mmu-m | 3532.167 | 3655.333 | 43.4 | 99.4 | 2317.417 | 365.3 | 385 | 3289.5 | 65.33 | 61.16 | 2912.75 | 2559.16 | 1.00 | 0.10 | 0.833 |
| 316 | 1244.667 | 754.6667 | 1294.083 | 0.58 | 773 | 4.4 | 874.25 | 1094.83 | 1.58 | 1679.417 | 4.166 | 990.333 | 1.15 | 0.20 | 0.944 |
| ILM | 11469 | 13962.67 | 12811.67 | 13962.67 | 16209.25 | 13962.67 | 15807.75 | 16401 | 14561.83 | 16716.83 | 11632.25 | 12251 | 0.97 | 0.10 |  |
| 31 | 443.083 | 234.75 |  | 393.6667 | 324.8333 | 426.25 | 73 | 723 | 483.6667 | 33 | 833 | 715.25 |  |  | 0.016 |
| ILMN_3168503 m | 263.1667 | 150.1667 | 286.8333 | 274.9167 | 286.8333 | 283.8333 | 383.1667 | 453.5 | 369.25 | 594 | 324.8333 | 54.5 | 0. 61 | 0.09 | . 013 |
| 3168422 mm | 361.75 | 259.8333 | 334.9167 | 265.1667 | 238.33 | 221.3333 | 277.5833 | 200.6667 | 153.75 | . 58 | 83 | 203 | 1.36 | 0.17 | 0.053 |
| ILMN_3167541 mmu-miR-694 | 1574 | 2162.66 | 2754.9 | 1912.58 | 1776 | 1854. | 3163.833 | 2436 | 1308 | 2983.667 | 1263.167 | 1429.75 | 1.14 | 0.24 | 0.849 |
| ILMN_3167754 mmu-miR | 7064.083 | 6913.75 | 8873.167 | 5493. | 91.75 | 203.583 | 256.3333 | 4947.75 | 4739.917 | 318.6667 | 4817.25 | 2754.917 | 8.26 | 4.67 | 0.080 |
| ILMN_3167918 mmu-mi | 806.833 | 533.5 | 83.3333 | 683.8333 | 544.25 | 554 | 950.583 | 827.8333 | 533. | . 08 | 3.5 | 827.8333 | 0.89 | 0.17 | 0.279 |
| ILMN_3167248 mmu-m | 351.4167 | 242.5833 | 443.0833 | 372 | 9.166 | 369.25 | 30.166 | 238.3333 | 8.66 | 332.0833 | 150.1667 | 230.1667 | 1.59 | 0.20 | 0.018 |
| ILMN_3168285 mm | 9.9 | 141 | 5371.667 | 5259.667 | 556.833 | 2867 | 2751.92 | 15100.5 | 46.4 | 31.583 | 7508.083 | 1048. | 2.31 | 1.98 | 0.089 |
| ILMN_3167086 mm | 3318.75 | 1506.5 | 2404.333 | 1635.083 | 1506.5 | 1599.167 | 2867 | 2120.25 | 1137.167 | 3074 | 1182.333 | 1943.917 | . 10 | 0.23 | 0.884 |
| ILMN_3168249 m | 22751.92 | 10534.83 | 21755.67 | 21350.83 | 20911.25 | 22194.33 | . 08 | 23985.08 | 94.3 | 24500.92 | 17161.5 | 5.42 | 0.93 |  |  |
| , | 329.0833 | 197.5833 | 339.1667 | 263.1667 | 234.75 | 227 | 245 | 236.5833 | 193 | 334.9167 | 150.9167 | 221.3333 | 1.22 | 0. 16 | 0. 354 |
| ILMN_3167605 mm | 10822.92 | 12936.67 | 158 | 13364.42 | 14561.83 | 13364.42 | 6175.917 | 112 | 1048.17 | 12936.67 | 11283.75 | 12936.67 | 1.28 | 0.11 | 0.026 |
| ILMN_3167133 mmu-miR | 236 | 38. | 369.25 | 307.8333 | 298.8333 | 290.5833 | 421.6667 | 379.75 | 250.75 | 510.9167 | 224.5833 | 329.0833 | 0.91 | 0.16 | 0.312 |
| ILMN_3167549 mmu-miR | 104 | 2699.75 | 3119.333 | 65 | 84.5 | 04.3 | 19.33 | 730.41 | 2208.9 | 3492.75 | . 5 | 2404.3 | 1.58 | 0.40 | 0.303 |
| ILMN_3167188 mmu-miR-720 | 24957 | 25463.4 | 194. | 23384.1 | 957.08 | 21350.83 | 23985.08 | 20911.25 | 197 | 22751.92 | 22194.33 | 17161.5 | 1.13 | 0.04 | 0.011 |
| ILMN_3169121 mmu-miR-742* | 7351.417 | 4434.333 | 9346.417 | 7561.3 | 64.08 | 925 | 39.08 | 3850 | 5071.25 | 963 | 54.2 | 4947.75 | 1.32 | 0.23 | 0.486 |
| ILMN_3167180 mm | 16209.25 | 11632.25 | 16716.83 | 16401 | 15807.75 | 15395 | 10534.83 | 11469 | 11896.83 | 14252.67 | 10428.17 | 42 | 1.30 | 0.09 | 0.014 |
| ILMN_3167621 m | 2006.667 | 849.1667 | 1480.333 | 937.1667 | 723 | 950.5833 | 1574.333 | 1278.083 | 603.1667 | 1746.167 | 544.25 | 1117.667 | . 18 | 0.29 | 0.958 |
| ILMN_3168961 mmu-miR-760 | 937.1667 | 361.75 | 937.1667 | 1800.25 | 2067.5 | 695.1667 | 2281.917 | 2162.667 | 613.3333 | 3532.167 | 754.6667 | 1070.583 | 1.00 |  | 0.291 |
| ILMN_3168003 mmu-miR-761 | 4288.5 | 2947.25 | 3318.75 | 3594 | 5646.75 |  | 10822.92 | 5798.167 | 990.3333 | 2730.417 | 3361.167 | 3289.5 | . 54 |  | 0.946 |
| ILMN_3167967 mm | 2867 | 3361.167 | 7111.083 | 3204.833 | 836.25 | 84.5 | 6237.917 | 4777.167 | 7064.083 | 3850 | 3804.083 | 1173.75 | 0.93 | 0.31 | 0. 202 |
| ILMN_3168100 mmu-miR | 1.166 | 1800.25 | 267.3333 | 6988 | 223.7 | 3074 | 7561.333 | 2983.667 | 7277.917 | 10822.92 | 83 | 4585.5 | 7.53 | . 14 | 0.514 |
| ILMN_3168106 mmu-miR-764-5 | 453.5 | 1329.583 | 586.0833 | 836.25 | 11469 | 4992.583 | 11156.33 | 0428.17 | 5752.583 | 5493 | 347.25 | 7351.417 | 0.62 | 0.41 | 0.16 |
| ILMN_3168388 mmu-miR- | 4585.5 | 298.8333 | 683.8333 | 2983.667 | 006.667 | 458 | 913.7 | 3419 | 67 | 44 | 5985.583 | 4739.917 | 0.33 | 0.1 | 0.00 |
| ILMN_3169112 mmu-miR | 21350.83 | 3074 | 9871.417 | 2730.4 | 6534 | 8221 | 5587.833 | 5493.5 | 3119.333 | 7416.333 | 11.333 | 91.7 | 1.73 | 0.58 | 0.357 |
| ILMN_3168519 mm | 763.8333 | 515.6667 | 964.4167 | 661.5 | 586.0833 | 620.6667 | 863.9167 | 950.5833 | 567.8333 | 1278.083 | 436.5833 | 648.1667 | 0.99 | 0.19 | 0.519 |
| ILMN_3169012 m | 234.75 | 151.9167 | 290.5833 | 293.666 | 263.1667 | 263.166 | 387.8333 | 232.5833 | 236.5833 | 329.0833 | 286.8333 | 324.8333 | . 85 | 0.09 | 0.133 |
| m | 715.25 | 80 | 2559.167 | 5693.167 | 268.5833 | 431.5833 | 431.5833 | 3903.917 | 379.75 | 447.5833 | 3389.167 | 4712.75 |  | 2.03 | 0.655 |
| ILMN_3169013 mmu-miR | 14.25 | 1655.25 | 2520.7 | 1429.75 | 0.2 | 1351.583 | 917 | 2.583 | 1173.75 | 99.75 | 8.917 | 9.4 | . 9 | . 28 |  |
| ILMN_3169014 mmu-miR-875-3 | 594 | 5 | 988.917 | 9004.417 | 4647.833 | 8394.833 | 11048.17 | 33 | 166.41 | 11632.25 | 193 | 3074 | 11.68 | 7.15 | 0.919 |
| ILMN_3169016 mmu-miR-877 | 3119.333 | 1034.583 | 211.1667 | 6237.917 | 5532 | 613.3333 | 250.75 | 209.75 | 477.1667 | 216.8333 | 5259.667 | 197.5833 | 8.46 | 4.43 | 0.143 |
| ILMN_3169011 mmu-miR-878-5p | 334.9167 | 0.75 | 379.75 | 304.25 | 280.1667 | 268.5833 | 342 | 267.3333 | 188.8333 | 320.5 | 176.75 | 170.9167 | 1.34 | 0.18 | 0.1 |
| ILMN_3168968 mmu-miR-879 | 483.6667 | 66 | 318.6667 | 332.083 | 256.333 | 236.5833 | 227 | 6.3 | 222.9167 | 355.8333 | 214.6667 | 200.6667 | 1.30 | 0.18 | 0.1 |
| ILMN_3169123 mmu-miR | 1828.917 | 274.9167 | 515 | 447.5833 | 361.75 | 355.8333 | 503.4167 | 524.1667 | 387.8333 | 9004.417 | 55.3333 | 576.5 | 1.17 | 0.5 | 0.429 |
| ILMN_3168975 m | 83 | 3333 | 671.2 | 489.416 | 461.25 | 387.8333 | 586.0833 | 414.6667 | 263.1667 | 613.3333 | 268.5833 | 318.6667 | 1.26 | 0.3 | 0.758 |
| ILMN_3168974 mm | 372 | 227 | 361.7 | 256.333 | 221.333 | 242.5833 | 334.9167 | 293.6667 | 230.1667 | 86.83 | 250.75 | 280.1667 |  | 0.12 | 0.981 |
| ILMN_3166986 mmu-m | 18895.4 | 9786 | 911 | 20911.25 | 21755.6 | 55.6 | 755.6 | 2338 | 911.2 | 755.6 | 505. | 16. |  |  | 30 |
| ILMN_3169103 mmu-miR-9 | 178.083 | 176.7 | 36.58 | 267.33 | 379.75 | 272 | 628.6667 | 544.25 | 383.16 | 471 | 65.583 | 242.5833 |  |  |  |
| ILMN_3169007 mmu-miR-92b | 7111.08 | 461.33 | 10089.5 | 7064.083 | 7904 | 4486.667 | 232.5833 | 4243 | 3289 | 913.7 | 3903.9 | 194.8333 | 10.29 | 5.32 | 0.007 |
| ILMN_3168517 mmu-miR-93 | 10684.5 | 10684.5 | 8653.917 | 9286.417 | 10428.1 | 2497.5 | 7351.417 | 2520.75 | 7561.333 | 359 | 820.25 | 6369.833 | 2.12 | 0.47 | 0.0 |
| ILMN_3169104 mmu-miR-93* | 2208.91 | 713.917 | 6913.75 | 47. | 8461.333 | 3026 | 2317.417 | 1351.583 | 5111.333 | 1943.917 | 4585.5 | 1154.917 | 2.33 | 0.7 | 0.04 |
| ILMN_3168174 mmu-miR-96 | 1968.58 | 27.667 | 2912.7 | 2120.25 | 1968.583 | 1776 | 3074 | 2067.5 | 1182.333 | 2754.917 | 1390.25 | 1614.25 | 1.24 | 0.2 | 0.728 |
| ILMN_3168262 mmu-miR-99b | 61 | 22194.3 | 16209.2 | 17845.7 | 18895.42 | 18348.58 | 15100.5 | 12095.75 | 14252.6 | 15807.75 | 14561.83 | 14561.83 | 1.30 | 0.1 | 0.025 |
| ILMN_3169129 solexa-1127-42 | 71.41 | 100 | 995.7 | 7611 | 85.33 | 9739.08 | 761 | 5371 | 1746.16 | 453.5 | 4739.917 | 868 | 5.26 | 2.45 | 0.0 |
| ILMN_3169130 solexa-120 | 1018.33 | . 33 | 55.08 | 544 | 8.08 | 92.7 | 294.08 | 1800.25 | . 8333 | 9.75 | 24 | 44.25 | 2.69 | 1.09 | 0.358 |
| ILMN_3169134 solexa-1416-339_ | 241.1667 | 185.3333 | 324.8333 | 6.83 | 59.8333 | 4.416 | 405.3333 | 312.75 | 248 | 458.75 | 272 | 2699.75 | 0.70 |  |  |
| ILMN_3169138 solexa-200-2167 | 5925. | 04 | 4288 | 5985 | 804.083 | 5532 | 280.1667 | 250.7 | 198.25 | 211.1667 | 1450.5 | 1.167 | 4.35 | 5.8 | 0.032 |
| ILMN_3169140 solexa-201-2163 | 156.75 | 164 | 242.5833 | 238.3333 | 32.5833 | 248 | 205.1667 | 332.0833 | 312.7 | 393.6667 | 277.5833 | 248 | 0.75 | 0.07 | 0.03 |
| ILMN_3168343 solexa-2054-23 | 467.416 | 222.9167 | 383.1667 | 318.6667 | 320.5 | 320.5 | 754.6667 | 483.666 | 307.8333 | 695.1667 | 339.1667 | 497.0833 | 0.73 | 0.13 | 0.05 |
| ILMN_3169146 solexa-27-9416 | 27525.7 | 26650.33 | 23985.08 | 25891.08 | 25463.42 | 24500.92 | 21350.83 | 22751.92 | 22751.92 | 24957.08 | 23384.17 | 23384.17 | 1.11 | 0.04 | 0.02 |
| ILMN_3169147 solexa-284-1594 | 12251 | 11283.75 | 11469 | 11896.83 | 12656 | 12811.67 | 5259.667 | 5302.583 | 6237.917 | 6695.167 | 6369.833 | 9346.417 | 1.91 | 0.1 | 0.000 |
| ILMN_3169149 solexa-3024-155 | 64.416 | 883.3333 | 1094.833 | 773 | 874.25 | 715.25 | 990.3333 | 1263.167 | 883.3333 | 1828.917 | 763.8333 | 836.25 | 0.89 | 0.1 | 0.316 |
| ILMN_3169150 solexa-3062-153 | 223.7 | 811.6 | 11896.83 | 8095.417 | 9004.417 | 1225 | 4434.333 | 4647.83 | 8873.167 | 6623.167 | 9004.417 | 12497.5 | 1.60 | 0.30 | . 078 |
| ILMN_3169151 solexa-308 | 6716.83 | 1755.6 | 11743.5 | 65 | 13962.67 | 13665.3 | 3655.33 | 04.41 | 36.833 | 11896.8 | 94.833 | 年1.333 | 2.16 | 0.51 | 0.016 |
| ILMN_3167558 solexa-4153-111 | 497.0833 | 731.583 | 1450 | 1018.333 | 918. | 827.833 | 1480.333 | 990.3333 | 372 | 1202.583 | 594 | 586.0833 | 1.46 | 0.52 | . 9 |
| ILMN_3169158 solexa-5560-82 | 307 | 817.2 | 777.16 | 6623.16 | 7561.33 | 3903.91 | 8310.833 | 9184.083 | 4877.83 | 6988.917 | 11.083 | 10428.17 | 0.71 | 0.13 | 0.082 |
| ILMN_3169159 solexa-5593-81 | 1173.75 | 964.4167 | 1408.083 | 893.75 | 11743.58 | 5798.167 | 10428.17 | 5868 | 5868 | 13133.08 | 3850 | 9184.083 | 0.71 | 0.4 | 0.17 |
| ILMN_3169160 solexa-564-789 | 290.5833 | 224.5833 | 576.5 | 414.6667 | 393.6667 | 421.6667 | 783.8333 | 554.5 | 324.8333 | 763.8333 | 351.4167 | 503.4167 | 0.8 | 0.22 | 0.22 |
| ILMN_3169162 solexa-897-515 | 544.25 | 453.5 | 715.25 | 533.5 | 950.5833 | 477.1667 | 836.25 | 4075.75 | 827.8333 | 883.3333 | 3289.5 | 453.5 | 0.60 | 0.1 | 0.130 |
| ILMN_3168513 mmu-let-7c | 10089.58 | 4486.667 | 34.91667 | 7351.417 | 2983.667 | 1968.583 | 3903.917 | 3492.75 | 11156.33 | 9871.417 | 9739.083 | 6873.917 | 0.87 | 0.39 | 0.277 |
| ILMN_3167189 mmu-let-7f | 9004.417 | 2208.917 | 5587.833 | 8005.833 | 4209.083 | 6623.167 | 10223.75 | 5693.167 | 8221.333 | 102.9167 | 7064.083 | 7277.917 | 13.54 | 12.85 | 0.788 |
| ILMN_3169082 mmu-miR-106b* | 2730.417 | 6791.75 | 471.5 | 2784.583 | 3903.917 | 7713.917 | 26.08333 | 10223.75 | 4075.75 | 5587.833 | 2947.25 | 4486.667 | 18.17 | 17.30 | 0.718 |
| ILMN_3167552 mmu-miR-10a | 220.4167 | 426.25 | 205.1667 | 205.1667 | 156.75 | 172.8333 | 178.0833 | 410.75 | 165.5833 | 272 | 661.5 | 3204.833 | 0.76 | 0.21 | 0.293 |
| 3167670 mmu-miR-125a-5p | 7190.91 | 7351.41 | 3655.333 | 4877.8 | 4347.25 | 5752.5 | 5693.16 | 51.9166 | 1800.2 | 5427.667 | 8653.917 | 1146 | 24.4 | 23.4 | 0.9 |

Table B2. -Continued

ILMN_3167031 mmu-miR-127
ILMN_3168302 mmu-miR-140*

ILMN_3168302 mmu-miR-140* ILMN_3167703 mmu-miR-150 ILMN_3168346 mmu-miR-152 ILMN_3169092 mmu-miR-15a* ILMN_3169092 mmu-miR-15a* $3169106 \mathrm{mmu}-\mathrm{miR}^{*}-19 \mathrm{a}^{*}$ ILMN_3169106 mmu-miR-19a ILMN_3169107 mmu-miR-28* ILMN_3168927 mmu-miR-296-3p ILMN_3167035 mmu-miR-29a
ILMN 3168172 mmu -miR-29b ILMN_3168172 mmu-miR-29b
ILMN 3167729 mmu-miR-30c ILMN_3167729 mmu-miR-30c ILMN_3167224 mmu-miR-30d ILMN_3166969 mmu-miR-324-5p
ILMN_3168985 mmu-miR-327 ILMN_3168985 mmu-miR-327 ILMN_3167584 mmu-miR-351 ILMN_3168131 mmu-miR-453 ILMN_3169041 mmu-miR-466j ILMN_3168479 mmu-miR-760:9.1 ILMN_3168958 mmu-miR-770-5p
ILMN 3169058 mmu-miR-99b* ILMN_3169058 mmu-miR-99b
ILMN 3169142 solexa-239-18 ILMN_3169142 solexa-239-1823 ILMN_3167574 mmu-miR-106b ILMN_ 3169051 mmu-miR-1198 ILMN_3169051 mmu-miR-1198 ILMN_ 3168303 mmu -miR-124 ILMN_3168303 mmu-miR-124
ILMN_3168012 mmu-miR-142-3p ILNN_3168012 mmu-mir-142-3 ILMN_3169054 mmu-miR-15b* ILMN_3167223 mmu-miR-28 ILMN_3169077 mmu-miR-294* ILMN_3168935 mmu-miR-338-5p
ILMN_3167006 mmu-miR-378 ILMN_3168946 mmu-miR-409-5p ILMN_3167988 mmu-miR-411 ILMN_3169005 mmu-miR-590-5p ILMN_3168959 mmu-miR-666-3p ILMN_3168270 mmu-miR-674 ILMN_3167814 mmu-miR-678 ILMN_3167999 mmu-miR-712 ILMN 3167710 mmu-miR-759 ILMN_3169153 solexa-403-1161 ILMN 3169155 solexa-447-1003 ILMN 3168955 mmu-miR-1224 ILMN_3168955 mmu-mir-1224 3169061 mmu-miR-125 ${ }^{*}$ ILMN_3169061 mmu-miR-125b ILMN_3168045 mmu-miR-17* ${ }^{\text {n }}$ ILMN_3168045 mmu-miR-17 ILMN_3168226 mmu-miR-23a
ILMN 3167837 mmu-miR-31 ILMN_3167837 mmu-miR-31 ILMN_3168180 mmu-miR-378* ILMN_3168410 mmu-miR-425*
ILMN 3168006 mmu -miR-434-5 ILMN_3168006 mmu-miR-434-5p
ILMN 3168995 mmu-miR-466g ILMN_3168995 mmu-miR-466g
ILMN_3167437 mmu-miR-497 ILMN_3169021 mmu-miR-582-3p ILMN_3168011 mmu-miR-672 ILMN_3168259 mmu-miR-682 ILMN_3168374 mmu-miR-693-3p ILMN_3167961 mmu-miR-764-3p ILMN_3168976 mmu-miR-874 ILMN_3169131 solexa-1278-371 ILMN 3169156 solexa-4983-92 ILMN 3169161 solexa-622-718 ILMN_ 3168724 mmu-622-7 ILMN_3168724 mmu-let-7i* ILMN 3167626 mmu-miR-199a ${ }^{\star}$ LLMN_3167002 ILMN_3167002 mmu-miR-200c ILMN_3168487 mmu-miR-203 ILMN_3168933 mmu-miR-330 ILMN_3167081 mmu-miR-330* ILMN_3169081 mmu-miR-34c* ILMN_3167244 mmu-miR-410 ILMN_3167599 mmu-miR-467b ILMN_3168236 mmu-miR-483* ILMN_3168520 mmu-miR-668 ILMN_3167536 mmu-miR-669a ILMN_3168059 mmu-miR-674 ILMN_3167422 mmu-miR-98 ILMN_3168463 mmu-let-7e ILMN_3168941 mmu-miR-139-3p ILMN 3169099 mmu-miR-26b* ILMN 3168356 mmu-miR-290-5p ILMN 3167226 mmu-miR-296-5p LLMN 3169084 mu-MR-296-5p
 ILMN_3167221 mmu-miR-485 ILMN_3167912 mmu-miR-501-3p ILMN_3169046 mmu-miR-669e ILMN_3167514 mmu-miR-671-5p ILMN_3168056 mmu-miR-673-5p ILMN_3167095 mmu-miR-770-3p

|  |  |  |  |  |  |  |  |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 6746.5 | 5302.583 | 10428.17 | 9985.333 | 7713.917 | 7190.917 | 39.08333 | 2480.25 | 7713.917 | 8873.1673 .167 |
| 9985.333 | 9871.417 | 32.1666 |  |  |  |  |  |  |  |
| 3492.75 | 3389.167 | 4243.5 | 1854.583 | 2606.083 | 2281.917 | 1390.25 | 5646.75 | 6746.5 | 41.83333 | $\begin{array}{lllllllllll}3492.75 & 3389.167 & 4243.5 & 1854.583 & 2606.083 & 2281.917 & 1390.25 & 5646.75 & 6746.5 & 41.83333\end{array}$ $\begin{array}{lllllllllll}2404.333 & 5752.583 & 36.58333 & 8653.917 & 8736.833 & 6093.417 & 5925.5 & 13133.08 & 11469 & 7277.917\end{array}$ $\begin{array}{llllllllllll}151.9167 & 194.8333 & 222.9167 & 180.9167 & 180.9167 & 191.4167 & 254.4167 & 156.75 & 964.4167 & 234.75\end{array}$ | 142.5833 | 153.75 | 222.967 | 180.9167 | 180.9167 | 191.4167 | 254.4167 | 156.75 | 964.4167 | 234.75 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $\begin{array}{rrrrrrrrrr}42.5833 & 153.75 & 426.25 & 344.75 & 334.9167 & 318.6667 & 620.6667 & 421.6667 & 203.5833 & 559 \\ 4379.5 & 7277.917 & 3730.333 & 42.83333 & 5798.167 & 5259.667 & 5150.25 & 431.5833 & 5150.25 & 10223.75\end{array}$ $\begin{array}{llllllllllll}150.9167 & 628.6667 & 8005.833 & 4288.5 & 421.6667 & 10428.17 & 731.5833 & 298.8333 & 863.9167 & 436.5833 & 723 & 143.6667\end{array}$ $\begin{array}{lllllllllllll}5371.667 & 8653.917 & 29.91667 & 7904.5 & 6695.167 & 7064.083 & 5868 & 3318.75 & 9985.333 & 5532 & 9633 & 10822.92\end{array}$ $\begin{array}{llrrrrrrrrrr}277.917 & 3594 & 69.75 & 1244.667 & 4313.5 & 3655.333 & 8095.417 & 8310.833 & 3026 & 6093.417 & 8736.833 & 8005.833\end{array}$ $\begin{array}{lllllllllllll}9633 & 10428.17 & 36.83333 & 9438.917 & 7351.417 & 11743.58 & 13760.83 & 17505.17 & 13364.42 & 12811.67 & 13962.67 & 13760.83\end{array}$ $\begin{array}{rrrrrrrrrrrr}1094.833 & 4739.917 & 52.33333 & 3074 & 5150.25 & 4288.5 & 4777.167 & 6175.917 & 4947.75 & 5693.167 & 8536.417 & 3254.25 \\ 1655.25 & 5150.25 & 1182.333 & 2006.667 & 1679.417 & 4715 & 94.83334 & 1635.083 & 1018.333 & 220.4167 & 1173.75 & 3020\end{array}$ $\begin{array}{rrrrrrrrrrrr}1655.25 & 5150.25 & 1182.333 & 2006.667 & 1679.417 & 471.5 & 94.83334 & 1635.083 & 1018.333 & 220.4167 & 1173.75 & 3026 \\ 218.6667 & 130.5833 & 277.5833 & 250.75 & 218.6667 & 410.75 & 1173.75 & 863.9167 & 559 & 648.1667 & 458.75 & 815.3333\end{array}$ $\begin{array}{lrrrrrrrrrrr}218.6667 & 130.5833 & 277.5833 & 250.75 & 218.6667 & 410.75 & 1173.75 & 863.9167 & 559 & 648.1667 & 458.75 & 815.3333 \\ 203.5833 & 191.4167 & 2048.417 & 6434.583 & 3254.25 & 8005.833 & 3776.083 & 683.8333 & 114.8333 & 324.8333 & 671.25 & 159.4167\end{array}$ $\begin{array}{llllllllllll}203.5833 & 191.4167 & 2048.417 & 6434.583 & 3254.25 & 8005.833 & 3776.083 & 683.8333 & 114.8333 & 324.8333 & 671.25 & 159.4167\end{array}$ $\begin{array}{llllllllllll}194.8333 & 134 & 332.0833 & 218.6667 & 211.1667 & 224.5833 & 2699.75 & 426.25 & 290.5833 & 254.4167 & 205.1667 & 277.5833\end{array}$ $\begin{array}{rrrrrrrrrrrr}164 & 131.4167 & 224.5833 & 200.6667 & 200.6667 & 245 & 332.0833 & 280.1667 & 241.1667 & 387.8333 & 197.5833 & 224.5833\end{array}$ $\begin{array}{rrrrrrrrrrrr}2480.25 & 79.08334 & 6873.917 & 4434.333 & 863.9167 & 2947.25 & 7904.5 & 5752.583 & 1574.333 & 8394.833 & 1800.25 & 7904.5 \\ 8873.167 & 11896.83 & 12251 & 7277.917 & 7190.917 & 8095.417 & 87.91666 & 3532.167 & 4313.5 & 7111.083 & 6913.75 & 3730.333\end{array}$ $\begin{array}{rrrrrrrrrrrr}8873.167 & 11896.83 & 12251 & 7277.917 & 7190.917 & 8095.417 & 87.91666 & 3532.167 & 4313.5 & 7111.083 & 6913.75 & 3730.333 \\ 4712.75 & 1943.917 & 70.75 & 471.5 & 3532.167 & 937.1667 & 2480.25 & 471.5 & 1009.083 & 4777.167 & 1679.417 & 1574.333\end{array}$ $\begin{array}{llllllllllll}312.75 & 467.4167 & 214.6667 & 431.5833 & 198.9167 & 161.3333 & 187.1667 & 467.4167 & 138.0833 & 227 & 120.5 & 893.75\end{array}$ $\begin{array}{lllllllllllll}6988.917 & 4288.5 & 4347.25 & 6746.5 & 95.16666 & 3776.083 & 2520.75 & 198.9167 & 6534 & 8816.583 & 453.5 & 6988.917\end{array}$ $\begin{array}{llllllllllll}405.3333 & 9286.417 & 307.8333 & 3655.333 & 6175.917 & 3730.333 & 161.3333 & 1450.5 & 6695.167 & 156.75 & 1308.5 & 2606.083\end{array}$ $\begin{array}{rrrrrrrrrrr} \\ 5532 & 9438.917 & 8221.333 & 5587.833 & 3850 & 7820.25 & 31.16667 & 56 & 5636.417 & 1094.833 & 6791.75\end{array}$ $\begin{array}{lrlrrrrrrrrr}176.75 & 122.5 & 179.0833 & 150.1667 & 4585.5 & 176.75 & 344.75 & 216.8333 & 242.5833 & 205.1667 & 304.25 & 198.9167\end{array}$ | 214.6667 | 150.9167 | 304.25 | 236.5833 | 242.5833 | 185.3333 | 151.9167 | 197.5833 | 2317.417 | 263.1667 | 146.6667 | 118.75 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | $\begin{array}{llllllllllll}436.5833 & 236.5833 & 414.6667 & 242.5833 & 241.1667 & 267.3333 & 304.25 & 3163.833 & 1244.667 & 304.25 & 112.75 & 132.6667\end{array}$ $\begin{array}{lrrrrrrrrrrr}524.1667 & 2867 & 6534 & 3903.917 & 8536.417 & 2120.25 & 179.0833 & 4739.917 & 5532 & 142.5833 & 5198.25 & 3804.083 \\ 4877.833 & 8310.833 & 9739.083 & 4209.083 & 11048.17 & 6369.833 & 72 & 11896.83 & 12095.75 & 80 & 10684.58 & 9438.917\end{array}$ $\begin{array}{lrrrrrrrrrrr}4877.833 & 8310.833 & 9739.083 & 4209.083 & 11048.17 & 6369.833 & 72 & 11896.83 & 12095.75 & 80 & 10684.58 & 9438.917 \\ 110.1667 & 107.75 & 3850 & 5427.667 & 164 & 3419.333 & 447.5833 & 324.8333 & 178.0833 & 7351.417 & 203.5833 & 3443.417\end{array}$ $\begin{array}{lrrrrrrrrrrr}107.75 & 3850 & 5427.667 & 164 & 3419.333 & 447.5833 & 224.8333 & & 178.083 & 7351.417 & 203.5833 & 3443.417 \\ 3776.083 & 1599.167 & 6623.167 & 165.5833 & 155.5 & 178.0833 & 236.5833 & 242.5833 & 156.75 & 4031.417 & 2436 & 119.25\end{array}$ $\begin{array}{lrrrrrrrrrrr}8653.917 & 6746.5 & 2824.917 & 6534 & 4739.917 & 48.58333 & 5071.25 & 55.25 & 6623.167 & 3776.083 & 5798.167 & 5150.25\end{array}$ $\begin{array}{rrrrrrrrrrr}97.5 & 267.3333 & 283.8333 & 7190.917 & 230.1667 & 280.1667 & 510.9167 & 274.9167 & 112.75 & 209.75 & 3074 \\ 3970.25 & 8816.583 & 85.667\end{array}$ $\begin{array}{rrrrrrrrrrr}3970.25 & 8816.583 & 85.58334 & 73.91666 & 1614.25 & 2048.417 & 1094.833 & 559 & 6093.417 & 265.1667 & 4031.417 \\ 117.6607 & 1086.8333\end{array}$ $\begin{array}{llllllllllll}117.6667 & 193 & 10534.83 & 410.75 & 414.6667 & 393.6667 & 695.1667 & 320.5 & 129.1667 & 307.8333 & 101 & 185.3333\end{array}$ $\begin{array}{rrrrrrrrrrrr}143.6667 & 166.4167 & 293.6667 & 245 & 250.75 & 259.8333 & 477.1667 & 283.8333 & 134.5833 & 366.1667 & 111.1667 & 175 \\ 554.5 & 200.6667 & 3776.083 & 32.16667 & 550.0833 & 41.08333 & 1368.417 & 1202.583 & 1048.917 & 5985.583 & 937.1667 & 2824.917\end{array}$ $\begin{array}{llllllllllll}193 & 136.6667 & 216.8333 & 158.1667 & 146.6667 & 216.8333 & 312.75 & 268.5833 & 191.4167 & 236.5833 & 151.9167 & 274.9167\end{array}$ $\begin{array}{llllllllllll}9739.083 & 7064.083 & 10822.92 & 11283.75 & 11283.75 & 11283.75 & 43.16667 & 40.83333 & 3970.25 & 533.5 & 2120.25 & 8816.583\end{array}$ $\begin{array}{rrrrrrrrrrrr}172.8333 & 447.5833 & 194.8333 & 161.3333 & 5111.333 & 4379.5 & 169 & 180.9167 & 150.1667 & 4486.667 & 198.9167 & 4992.583\end{array}$ $\begin{array}{rrrrrrrrrrrr}683.8333 & 1202.583 & 150.9167 & 3289.5 & 1244.667 & 1368.417 & 4817.25 & 2947.25 & 4777.167 & 129.1667 & 4379.5 & 6746.5\end{array}$ $\begin{array}{lllllllllllll}3903.917 & 5693.167 & 1244.667 & 1070.583 & 1009.083 & 218.4667 & 2365.333 & 41.41667 & 1189.333 & 35.83333 & 2824.917 & 366.1667\end{array}$ $\begin{array}{llllllllllll} \\ 153.75 & 128.1667 & 200.6667 & 170.9167 & 172.8333 & 197.5833 & 197.5833 & 178.0833 & 139.6667 & 191.4167 & 136.6667 & 180.9167\end{array}$ $\begin{array}{lllllllllllll}197.5833 & 695.1667 & 241.1667 & 175 & 188.8333 & 2006.667 & 170.9167 & 334.9167 & 280.1667 & 101 & 145.8333 & 148.5833\end{array}$

 $\begin{array}{rrrrrrrrrrrr}7561.333 & 5587.833 & 9004.417 & 5868 & 7111.083 & 10223.75 & 6434.583 & 194.8333 & 8653.917 & 54.33333 & 5587.833 & 44.16667\end{array}$ $\begin{array}{llllllllllll}8816.583 & 503.4167 & 2365.333 & 88.58334 & 88.58334 & 1635.083 & 8816.583 & 7820.25 & 8005.833 & 105.9167 & 8221.333 & 3419.333\end{array}$ $\begin{array}{rrrrrrrrrrrr}8816.583 & 503.4167 & 2365.333 & 88.58334 & 88.58334 & 1635.083 & 8816.583 & 7820.25 & 8005.833 & 105.9167 & 8221.333 & 3419.333 \\ 2520.75 & 2281.917 & 38.58333 & 874.25 & 2754.917 & 2730.417 & 35.75 & 3204.833 & 6988.917 & 40.83333 & 4486.667 & 1854.583\end{array}$ $\begin{array}{lrrrrrrrrrrr}4947.75 & 2048.417 & 52.16667 & 49.08333 & 1202.583 & 3119.333 & 3254.25 & 76.58334 & 908.8333 & 7820.25 & 4288.5 & 2480.25\end{array}$ $\begin{array}{lrrrrrrrrrrr}4434.333 & 5868 & 827.8333 & 8736.833 & 227 & 1800.25 & 99.91666 & 117.6667 & 661.5 & 119.25 & 3492.75 & 6913.75 \\ 90.41666 & 6175.917 & 3254.25 & 141 & 5302.583 & 79045 & 77.25 & 82.3334 & 1429.75 & & \end{array}$ $\begin{array}{rrrrrrrrrrrr}90.41666 & 6175.917 & 3254.25 & 141 & 5302.583 & 7904.5 & 77.25 & 82.33334 & 1429.75 & 9286.417 & 6434.583 & 5071.25 \\ 5198.25 & 342 & 8536.417 & 146.6667 & 135.5833 & 134 & 6623.167 & 142.5833 & 125.5833 & 979.5 & 3026 & 3532.167\end{array}$ $\begin{array}{rrrrrrrrrrrr}5198.25 & 342 & 8536.417 & 146.6667 & 135.5833 & 134 & 6623.167 & 142.5833 & 125.5833 & 979.5 & 3026 & 3532.167 \\ 122.5 & 815.3333 & 1390.25 & 806.8333 & 3318.75 & 33.75 & 2659.417 & 31.58333 & 1408.083 & 4075.75 & 5646.75 & 2365.333\end{array}$ $\begin{array}{lrrrrrrrrrrr}122.5 & 815.3333 & 1390.25 & 806.8333 & 3318.75 & 33.75 & 2659.417 & 31.58333 & 1408.083 & 4075.75 & 5646.75 & 2365.333\end{array}$ $\begin{array}{llllllllllll}136.6667 & 129.8333 & 250.75 & 194.8333 & 187.1667 & 211.1667 & 307.8333 & 203.5833 & 118.75 & 241.1667 & 96.08334 & 166.4167\end{array}$ $\begin{array}{lllllllllllll}7508.083 & 5371.667 & 6791.75 & 70 & 68.16666 & 4075.75 & 8394.833 & 81.25 & 8394.833 & 2824.917 & 7561.333 & 5111.333\end{array}$ $\begin{array}{llllllllllll}26.41667 & 34.25 & 431.5833 & 1614.25 & 1263.167 & 2659.417 & 3443.417 & 2048.417 & 158.1667 & 29.08333 & 230.1667 & 1308.5\end{array}$ 191.4167 $\begin{array}{rrrrrrrrrrrr}31.16667 & 28.08333 & 1912.583 & 1009.083 & 1828.917 & 683.8333 & 4347.25 & 2754.917 & 715.25 & 3419.333 & 33.75 & 1202.583\end{array}$ $\begin{array}{rrrrrrrrrrrr}1429.75 & 2730.417 & 71.16666 & 5071.25 & 1538.583 & 815.3333 & 6791.75 & 81.58334 & 2983.667 & 85.58334 & 918.5 & 1635.083\end{array}$ $\begin{array}{rrrrrrrrrrrrr}379.75 & 2436 & 1263.167 & 4243.5 & 43.83333 & 250.75 & 53.5 & 4209.083 & 1635.083 & 5371.667 & 5071.25 & 53.5\end{array}$ $\begin{array}{rrrrrrrrrrrrr}89.66666 & 990.3333 & 169 & 164 & 129.1667 & 1943.917 & 366.1667 & 259.8333 & 5371.667 & 134.5833 & 426.25 & 7713.917\end{array}$ $\begin{array}{lrrrrrrrrrrr}89.6666 & 990.333 & 169 & 164 & 129.1667 & 1943.917 & 366.1667 & 259.8333 & 5371.667 & 134.5833 & 426.25 & 7713.917 \\ 8005.833 & 9633 & 10684.58 & 9184.083 & 4131.917 & 5302.583 & 159.4167 & 94.25 & 7611 & 1263.167 & 8095.417 & 75.08334\end{array}$ $\begin{array}{lrrrrrrrrrrr}515.6667 & 2120.25 & 2480.25 & 3730.333 & 827.8333 & 205.1667 & 122.5 & 70 & 1263.167 & 64.16666 & 105.9167 & 161.3333\end{array}$ $\begin{array}{lrrrrrrrrrrr}131.4167 & 5259.667 & 7561.333 & 7111.083 & 102.9167 & 4313.5 & 87.66666 & 620.6667 & 5693.167 & 123.6667 & 6534 & 4556.833\end{array}$ $\begin{array}{llrrrrrrrrrrr}42.83333 & 6988.917 & 544.25 & 4379.5 & 4486.667 & 10684.58 & 7111.083 & 46.91667 & 10684.58 & 41.08333 & 5752.583 & 58.5\end{array}$ $\begin{array}{rrrrrrrrrrr}1776 & 3204.833 & 8310.833 & 2754.917 & 5198.25 & 2824.917 & 100.4167 & 65.25 & 2730.417 & 65.25 & 2784.583 \\ 56.91667\end{array}$ $\begin{array}{lrrrrrrrrrrr}1368.417 & 5111.333 & 129.1667 & 3492.75 & 117.6667 & 3594 & 8005.833 & 161.3333 & 4209.083 & 188.8333 & 149.1667 & 2208.917\end{array}$ $\begin{array}{rrrrrrrrrrrr}120.5 & 2520.75 & 159.4167 & 159.4167 & 143.6667 & 135.5833 & 158.1667 & 218.6667 & 185.3333 & 256.3333 & 185.3333 & 155.5 \\ 6791.75 & 3730.333 & 4992.583 & 5150.25 & 2520.75 & 3804.083 & 76 & 90.16666 & 1506.5 & 120.5 & 107.75 & 1828.917\end{array}$ $\begin{array}{rrrrrr}6791.75 & 3730.333 & 4992.583 & 5150.25 & 2520.75 & 3804.083\end{array}$ $\begin{array}{lllrrrrrr}138.0833 & 113.8333 & 187.1667 & 156.75 & 205.1667 & 230.1667 & 263.1667 & 222.9167 & \end{array}$ $\begin{array}{rrrrrrrrr}155.5 & 114.1667 & 170.9167 & 143.6667 & 120.5 & 158.1667 & 320.5 & 166.4167 & \end{array}$

 $\begin{array}{lllllllllllrr} & 191.4167 & 21.833 & & 125.583 & 142.5833 & 179.0833 & 145.8333 & 283.8333 & 169 & 193\end{array}$ $\begin{array}{rrrrrrrrrrrr}169 & 105 & 185.3333 & 176.75 & 158.1667 & 149.1667 & 138.0833 & 158.1667 & 132.6667 & 222.9167 & 155.5 & 227 \\ 6175.917 & 7190.917 & 7904.5 & 2404.333 & 34.91667 & 5646.75 & 33.75 & 40.08333 & 5259.667 & 11283.75 & 6175.917 & 71.16666\end{array}$ $\begin{array}{lllllllllllll}3163.833 & 38.08333 & 2730.417 & 39.08333 & 41.41667 & 46.5 & 6988.917 & 3254.25 & 443.0833 & 2067.5 & 1429.75 & 754.6667\end{array}$ $\begin{array}{llllllllllll}1408.083 & 87.91666 & 2317.417 & 2867 & 3163.833 & 4556.833 & 97.5 & 38.58333 & 5646.75 & 39.08333 & 1776 & 2912.75\end{array}$ $\begin{array}{rrrrrrrrrrrr}141 & 114.8333 & 150.1667 & 3443.417 & 139.6667 & 351.4167 & 4739.917 & 2006.667 & 169 & 214.6667 & 586.0833 & 179.0833\end{array}$ | 5868 | 40.75 | 3804.083 | 33.75 | 222.9167 | 35.5 | 38.16667 | 248 | 3389.167 | 42.33333 | 1574.333 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 23177.417 |  |  |  |  |  |  |  |  |  |  | $\begin{array}{rrrrrrrrrrrr}187.1667 & 248 & 180.9167 & 148.5833 & 149.1667 & 179.0833 & 185.3333 & 187.1667 & 151.9167 & 238.3333 & 92.08334 & 100.4167 \\ 2947.25 & 763.8333 & 6093.417 & 33 & 30 & 30.41667 & 194.8333 & 32 & 4817.25 & 30.08333 & 1614.25 & 676.3333\end{array}$ $\begin{array}{rrrrrrrrrrrrr}2947.25 & 763.8333 & 6093.417 & 33 & 30 & 30.41667 & 194.8333 & 13.5 & 4817.25 & 30.08333 & 1614.25 & 676.3333 \\ 83.58334 & 205.1667 & 221.3333 & 169 & 165.5833 & 166.4167 & 241.1667 & 134.5833 & 93.16666 & 164 & 117.6667 & 108.5833\end{array}$ $\begin{array}{rrrrrrrrrrrr}83.58334 & 205.1667 & 221.3333 & 169 & 165.5833 & 166.4167 & 241.1667 & 134.5833 & 93.16666 & 164 & 117.6667 & 108.5833 \\ 6623.167 & 7611 & 4647.833 & 79.75 & 5868 & 222.9167 & 41.08333 & 5925.5 & 53.5 & 60.16667 & 2365.333 & 40.25\end{array}$ $\begin{array}{rrrrrrrrrrrr}40.25 \\ 2699.75 & 4556.833 & 4434.333 & 3970.25 & 3289.5 & 62.91667 & 47.41667 & 49.08333 & 54.33333 & 72.16666 & 2048.417 & 2436\end{array}$ $\begin{array}{rrrrrrrrrrrr}119.25 & 661.5 & 105.9167 & 421.6667 & 142.5833 & 1746.167 & 98 & 2317.417 & 2281.917 & 121.5 & 2162.667 & 3903.917 \\ 6237.917 & 3163.833 & 37.83333 & 197.5833 & 3325 & 7351.417 & 32.41667 & 3389.167 & 2784.583 & 32.75 & 2208.917 & 3575\end{array}$ $\begin{array}{rrrrrrrrrrrr}6237.917 & 3163.833 & 37.83333 & 197.5833 & 33.25 & 7351.417 & 32.41667 & 3389.167 & 2784.583 & 32.75 & 2208.917 & 35.75 \\ 272 & 1703.417 & 2606.083 & 2067 & 533.5 & 54.53333 & 41.66667 & 42.75 & 93.5 & 4347.25 & 471.5 & 41.00333\end{array}$ $\begin{array}{rrrrrrrrrrrr}272 & 1703.417 & 2606.083 & 2067.5 & 533.5 & 54.33333 & 41.66667 & 42.75 & 93.5 & 4347.25 & 471.5 & 41.08333 \\ 170.9167 & 550.0833 & 4209.083 & 3026 & 7277.917 & 3289.5 & 30 & 30.41667 & 31.25 & 26.75 & 715.25 & 32\end{array}$ $\begin{array}{rrrrrrrrrrrr}112.75 & 90.41666 & 127.0833 & 1703.417 & 2559.167 & 121.5 & 131.4167 & 3026 & 121.5 & 4712.75 & 191.4167 & 165.5833\end{array}$ $\begin{array}{rrrrrrrrrrrr}3204.833 & 3443.417 & 7351.417 & 139.6667 & 63.5 & 71.16666 & 550.0833 & 50.5 & 4712.75 & 7713.917 & 114.8333 & 42.75\end{array}$ $\begin{array}{llllllllllll}1154.917 & 950.5833 & 42.58333 & 6913.75 & 52.33333 & 48.33333 & 7416.333 & 62.91667 & 4434.333 & 10428.17 & 44.83333 & 4777.167\end{array}$



Table B2. -Continued

|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


|  | signal | ratio | SEM | -va |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 8 so | 94.25 | 115.9 | 238.3 | 203.5 | 193 | 1189 | 324.8 | 234 | 111.16 | 267.3 | 90.166 | 124.9 | 2.56 | 1.43 | 年 |
| 133 solexa-1328-360 | 4992.583 | 1429.75 | 38.83333 | 35.75 | 220.4167 | 1429.75 | 105.9167 | 2606.083 | 39 | 44.75 | 515.6667 | 7064.083 | 8.35 | 7.76 | 0.797 |
| sol | 7820.25 | 4877.833 | 30.75 | 503.4167 | 1368.417 | 30.08333 | 30.41667 | 51.08333 | 918.5 | 3903.917 | 874.25 | 130.5833 | 59.09 | 42.53 | 0.424 |
| sol | 3443.417 | 1666 | 43.666 | 41.41667 | 2.5 | 43.5 | 5111.333 | 8221.333 | 36.83333 | 8536 | 3318.75 | 8873.167 | 0.56 | 0.27 | 0.082 |
| ILMN_3168578 solexa-5 | . 3333 | 30 | 25 | . 83 | 48.917 | в.833 |  | 7416.333 | 268.5833 |  | 40.08333 | 4647.833 | 4.42 | 4.35 | 0.068 |
| ILMN_3167894 mmu-miR-146b | 102.9167 | 6.083 | 585.5 | 5302.583 | 912.75 | 1828.917 | 106.6667 | 123.6667 | 110.1667 | 179.0833 | 128.1667 | 125.5833 | 23.34 | 5.78 | 12 |
| ILMN_3167522 mmu-miR-154 | 92.08334 | 5925.5 | 112.75 | 3.75 | 2947.25 | 150.1667 | 119.25 | 105 | 7190.917 | 2162.667 | 9184.083 | 123.6667 | . 88 | 9.31 | 97 |
| ILMN_3169093 mmu-mir-16* | 118.75 | 318.666 | 3419.333 | 3119.333 | 8.66666 | 1912.583 | 333 | . 1667 | 101.25 | 129.8333 | 72 | 109.3333 | . 98 | 5.82 | 0.101 |
| ILMN_3167698 mmu-m | . 416 | .66 | 193 | 193 | 124.916 | 27.08 | .83 | 5.583 | 6.66 | 185.33 | 3333 | 178.0 | 1.03 | 0.14 | 0.910 |
| 7 | 158.1667 | 118.75 | 172.8333 | 172.8333 | 134 | 156.75 | 132.6667 | 170.9167 | 148.5833 | 198.9167 | 130.5833 | 220.4167 | 0.94 | 0.09 | 0.389 |
| m | 96.08334 | 139.6667 | 93.5 | 85.58334 | 94.83334 | 1278.083 | 141 | 2559.167 | 1070.583 | 131.4167 | 1599.167 | 1329.583 | 0.42 | 0.16 | 0.091 |
| 5 m | 49.58333 | 3119.333 | 54.83333 | 2520.75 | 48.16667 | 1408.083 | 46.83333 | 41.08333 | 1854.583 | 51.58333 | 3594 | 236.5833 | 21.97 | 13.28 | 0.834 |
| 1 mmu -miR-294* | 11 | . 1667 | 153 | 129.8333 | 248 | 143.66 | 165.5 | 191.4167 | 874.25 | 937.1667 | 970.25 | 238 | 1.18 | 75 | 57 |
| ILMN_3168938 mmu-miR-342-5p | 28.5 | 99.3 | 6369.8 | 29.6666 | 4947.75 | 585 | 31.75 | 6695.167 | 32.4 | 33333 | 28.83333 | 2947.25 | 1.96 | 74 | 05 |
| ILMN_3167820 mmu-miR-409-3p | 33333 | 723 | - 5868 | 671.25 | 683.8333 | 32. | 28.83333 | 32.75 | 34.58 | 28.5 | 25 | 167 | 45 | 4.57 | 0.357 |
| ILMN_3167973 mmu-miR-433 | 3333 | 9.4167 | 1.5 | 5.25 | 1703.417 | 9.1666 | 54.25 | 63.5 | 497.0833 | 585.5 | 950.5833 | 59 | 2.55 | 1.15 | 0.722 |
| 3167845 mmu-miR-677 | . 33 | 166 | 8.91 | 39 | 329.58 | 83.33 | 1666 | 58333 | 7.33 | 723 | 1.25 | 67 | 8.46 | 4.41 | 0.401 |
| 0 m | 224.5833 | 187.1667 | 254.4167 | 187.1667 | 161.3333 | 1450.5 | 130.5833 | 135.5833 | 99.91666 | 125.5833 | 94.83334 | 110.1667 | 3.67 | 1.91 | 0.219 |
| ILMN_3167032 mmu-miR-699 | 5587.833 | 4209.083 | 123.6667 | 2912.75 | 4777.167 | 1506.5 | 150.9167 | 114.8333 | 72.58334 | 107.75 | 1137.167 | 94.25 | 20.43 | 6.37 | 0.014 |
| m | 4031.417 | 70.25 | 83 | 77.25 | 75.33334 | 101 | 5532 | 5111.333 | 1891.5 | 4131.917 | 91.16666 | 1263.167 | 0.29 | 0.16 | 0.033 |
| solexa-2 | 70.75 | . 666 | 167 | 31.4 | 3594 | 3163.833 | 117.6667 | 115.9167 | 221.3333 | 117.6667 | 1506.5 | 70.33334 | 14.09 | 8.20 | 2 |
| ILMN_3168320 mmu-m | 30.58333 | . 58333 | 30.8333 | 33.25 | 31.25 | . 163 | 9985.33 | 6791.75 | 2162.667 | 35.5 | 2983.66 | 31.25 | 2.96 | 2.77 | 85 |
| ILMN_3169063 mmu-miR-136 | 6.8333 | 4347.25 | 3 | 53.75 | 179. | 46.08333 | 42.75 | 42.33333 | 39.58333 | 3 | 1480.333 | 42.83333 | 49.59 | 32.10 | 0.254 |
| ILMN_3168426 mmu-miR-148b | 47.83333 | 1574.33 | . 66667 | 52.16667 | 45.66667 | 151.9167 | 70 | 1828.917 | 6175.917 | 52.91667 | 6746.5 | 1278.083 | 0.44 | 0.18 | 0.126 |
| ILMN_3167158 mmu-m | 221.333 | 93.5 | 9.83 | 191.416 | 29.8333 | 111.1667 | 153.75 | 139.6 | 2606.083 | 550.0833 | 1202.583 | 141 | 0.57 | 0.21 | 0.166 |
| 3168986 m | 175 | 149.1667 | 220.4167 | 155.5 | 145.8333 | 175 | 176.75 | 176.75 | 9.33 | 111.1667 | 75.33334 | 91.5 | 1.52 | 0.21 | 0.083 |
| m | 3389.167 | 34.91667 | 132.6667 | 40.08333 | 2227.667 | 8333 | 43.33333 | 42.58333 | 176.75 | 5646.75 | 815.3333 | 36.58333 | 13.94 | 12.86 | 0.907 |
| m | 1800.25 | 138.0833 | 40.75 | 979.5 | 38.08333 | 39 | 083 | 4288.5 | 234.75 | 62.91667 | 41.08333 | 4379.5 | 0.27 | 7.37 | 0.390 |
| mmu-n | 31.75 | 3970.25 | -27.75 | 29.33333 | 30.41667 | 3850 | 38.58333 | 31.75 | 4243.5 | 33.75 | 3 | 3163.833 | . 34 | 20.74 |  |
| mmu-m | 83 | 30.58333 | . 08 | 8394.833 | 6434.583 | 58 | 31 | 30 | 5985.583 | 2.5 | 0.1667 | 5532 | 53.19 | 41.96 | . 03 |
| m | 1214.66 | 46.83333 | 56.91667 | . 66 | 964.4167 | 9.417 | 50.583 | 333 | 38.83333 | 4379.5 | . 58333 | 45.75 | 14.10 | 6.18 | 0.073 |
| 7 mmu -n | 27.7 | 169 | 203.5833 | 48.33333 | 27.16667 | 30 | 461 | 1214.667 | 28.83333 | 38.08333 | 467.4167 | 28.5 | 1.61 | 1.11 | 0.175 |
| ILMN_3166970 mmu-m | 57.75 | 16 | 75.33334 | 76 | 2.58 | 18.75 | 3594 | 224.58 | 220.41 | 159.4167 | 218.6667 | 342 | 0.28 | 0.06 | 0.258 |
| 3 mmu -miR-883a-3 | 80.75 | 92.08334 | 165.5833 | 145.8333 | 134.5833 | 150.9167 | 248 | 164 | 105 | O3.58 | 5.9167 | 150.91 | 0.89 | 0.18 | 0.321 |
| mmu-miR-101b | 68.5 | 1009.083 | 65.25 | 2699.75 | 67 | 62.58333 | 70.75 | 8334 | 4.66 | 81.25 | 259.8333 | 103.916 | 81 | 5.40 | 0.335 |
| m | 1666 | 908.8333 | 136.6667 | 120.5 | 101.25 | 130.5833 | 220.4167 | . 9167 | 96.75 | . 91 | 8.75 | 56.7 | 70 | 0.87 | 0.505 |
| m | 135.5833 | 108.5833 | 145.8333 | 138.0833 | 141 | 114.8333 | 125.5833 | 134 | 131.4167 | 242.5833 | . 8333 | 259.8333 | . 79 | 0.11 | 0.115 |
| m | 87.66666 | 142.5833 | 101.25 | 118.75 | 176.75 | 101.25 | 101 | 103.9167 | 339.1667 | 194.8333 | 227 | 120.5 | . 79 | 0.14 | 0.186 |
| m | 129.1 | 112.75 | 134. | 111.8333 | 100 | 15. | . 58 | 128.1667 | 141 | 103.9167 | 7 | 620 | 0.73 | 0.13 | 0.231 |
| ILMN_3168138 mmu-m | 52.5 | 332.0833 | 59.58333 | 54.33333 | 57.41667 | 69.75 | 467.4167 | 60.16667 | 431.5833 | 65.83334 | 46.83333 | 254.4167 | 1.35 | 0.85 | 0.321 |
| 9 mmu -miR-466d-3 | 35.75 | 33.83333 | 1368.417 | 1574.33 | 36.58333 | 3.833 | . 16 | 5532 | 31.33333 | 40.25 | 2754.917 | 37.33333 | 14.12 | 8.65 | 0.458 |
| ILMN_3168957 mmu-miR-671-3p | 88.58334 | .66 | 6666 | 57 | 5985.583 | 70 | 55.7 | 7.917 | 60.166 | 16 | 2480.25 | 39.58333 | 1.36 | 0.33 | 0.710 |
| ILMN_3168248 mmu-miR-696 | 56.83333 | 53.5 | 03.917 | 69.25 | 333 | 3254.25 | 114.8333 | 98 | 2067.5 | . 416 | 87.66666 | 93.16666 | 12.94 | 7.6 | 0.095 |
| ILMN_3167384 sol | 36.83333 | 66.83334 | 272 | 1034.583 | 32.16667 | 34.75 | 33.16667 | 32.16667 | 53.16667 | 34.66667 | 503.4167 | 31.5833 | 6.38 | 4.76 | 0.953 |
| m | 2067.5 | 36.58333 | 35.58333 | 34.91667 | 1891.5 | 2.41667 | 34.75 | 04.083 | 30.58333 | 38.58333 | 35.58333 | 33.25 | 19.28 | 11.74 | 0.982 |
| m | 2824.917 | 806.8333 | 59.16667 | 59 | 61.08333 | 4877.833 | 67.75 | 64.58334 | 59.58333 | 84.16666 | 72.16666 | 54.25 | 24.44 | 14.60 | 0.151 |
| m | 94.83334 | 339.1667 | 138.0833 | 123.6667 | 111.8333 | 120.5 | 139.6667 | 4379.5 | 79.08334 | 102.1667 | 2227.667 | 107.75 |  |  | 0.204 |
| m | 22 | 101 | 124.9167 | 105 | 5493.5 | 119.25 | 143.6667 | . 6 | . 83 | 136. | 124.9167 | 142.5833 | 10.48 | 7.11 | 0.230 |
| mmu-miR-24-1* | 61.0833 | 320.5 | 28.08333 | 1666 | 416 | 29.08333 | 833 | 28.5 | - 28.5 | 198.2 | 27.16667 | 1390.25 | 2.54 | 1.77 | 0.283 |
| ILMN_3168984 mmu-miR-297c | 37.41667 | 916 | 583 | . 3333 | 16 | .833 | 49.58333 | 17.25 | 5.16 | 43.5 | 36.58333 | 205.1667 | 0.48 | 0.18 | 0. 28 |
| ILMN_3167369 m | 74.33334 | 64.16666 | 130.5833 | 94.83334 | 89.66666 | 102.1667 | 58.5 | 121.5 | 143.6667 | 5.8333 | 134.5833 | 250.75 | . 74 | 0.13 | 0.080 |
| ILMN_3169080 mm | 148.5833 | 111.8333 | 164 | 127.0833 | 114.8333 | 139.6667 | 164 | 122.5 | 102.9167 | 134 | 119.25 | 22.166 | 1.12 | 0.12 | 0.463 |
| m | 39.33333 | 1912.583 | 40.08333 | 3318.75 | 34.66667 | 38.08333 | 36.58333 | 39.58333 | 39.08333 | 42.75 | 1968.583 | 333 | 21.48 | 13.66 | 0.500 |
| m | 283.8333 | 124.9167 | 50.08333 | 47.58333 | 47.58333 | 45.08333 | 44.58333 | 4.16667 | 2480.25 | 51.91667 | 731.5833 | 47.25 | 1.86 | 0.99 | 0.310 |
| mmu- | 125.5833 | 155.5 | 122.5 | 114.1667 | 103.9167 | 122.5 | 123.6667 | 118.75 | . 66 | 193 | 806.8333 | 127.0833 |  |  |  |
| mmu-m | 91.16666 | 129.1667 | 151.9167 | 150.9167 | 151.9 | 169 | 238 | 141 | 101 | 176.75 | 16 | 114.8333 |  |  |  |
| mmu-miR-452 | 121.5 | . 916 | 142.583 | 131.4167 | 138.0833 | 7.75 | 148.583 | 69 | 5.58 | 9.833 | 164 | 139.66 |  |  | 65 |
| ILMN_3166991 mmu-miR | 83 | 80 | 158.16 | 132.666 | 125.5833 | 141 | 211.16 | 45.8333 | 95.166 | 224.58 | 96.75 | 145.8333 | 0.91 | 0.20 | 0.323 |
| ILMN_3169001 mmu-miR-509-5 | 58334 | . 75 | 90.4166 | 1.16666 | 84.16666 | . 83334 | 111.833 | 29.8333 | 134 | 172.8 | 123.6667 | 164 | 0.62 | 0.04 | 0.002 |
| ILMN_3168199 mm | 33.83333 | 827.8333 | . 833 | 833 | 243 | 44.83333 | 47.2 | 46. | 6.583 | 37.16667 | 56.83333 | 6.16667 | 13.1 | 2.3 | 0.836 |
| mmu | 51.58333 | 280.1667 | 89.16666 | 82 | 2048 | 16666 | . 833 | 85.58334 | 1776 | 81.58334 | 54.33333 | 72.58334 | 7.28 | 6.10 | 0.883 |
| m | 1679.417 | 1048.917 | 60.83333 | 9.75 |  | 50.5 | 56 | . 75 | 41 | 48.33333 | 4.83333 | 72.16666 | . 62 | 4.87 | 0. 534 |
| m | 70 | 1117.667 | 54.25 |  | 5. 25 | 8334 | 3026 |  |  | . 33 | 51.58333 |  |  | 0.69 | 0. 563 |
| 7 mmu -m | 71.25 | 9.8 | 6.8333 | 83333 | 43.083 |  | 79.7 | 2.583 | . 083 | .83 | 6.9160 | 5.333 | 29.82 |  |  |
| ILMN_3167809 mmu-miR | 32.4166 | 50.5833 | 4.6666 | 33.7 | 209.75 | 30.25 | 08333 |  | . 416 | 34. | 30.5833 | 447.58 |  | 1.05 | 0.338 |
| ILMN_3169154 solexa-4327-10 | 31.3333 | 2.41667 | 33.75 | 84.4166 | 31.1666 | 65.583 | 32 | 36.58333 | 32.7 | 9438.9 | 33.25 | 4243.5 | 0.65 | 0.20 | 13 |
| ILMN_3169157 solexa-5067-90 | 30.7 | 165.5833 | 31.16667 | 2824.9 | 912.583 | 1.4166 | 34.66667 | 3.16667 | 31.7 | 30.83333 | 30.41667 | 34.41667 | 27.0 | 16.3 | 0.171 |
| ILMN_3169088 mmu-let-7c-2*, | 44.1666 | . 83333 | . 33333 | . 5833 | 1.08333 | 166 | 419.33 | 4.83333 | 3361.16 | 55.25 | 4.58333 | 46.5 | 0.60 | 0.1 | 0.17 |
| ILMN_3169091 mmu-let-7¢ | 102.1667 | 96.75 | 3.6667 | 135.583 | 32.6667 | . 58 | 1.41 | 2.8333 | 124.9167 | 200.6667 | 14.1667 | 135.5833 | 0.86 | 0.1 | 0.215 |
| ILMN_3167353 mmu-miR-107 | 98 | . 1666 | 91.5 | 153.75 | 77.25 | 2.66 | 108.58 | 333 | 117.666 | 53.75 | 883.333 | 136.6667 | 0.73 | 0.1 | 0.313 |
| 3167547 mmu-miR-122 | 9.4167 | 96.0833 | . 1667 | 121 | 5.916 | 5.9167 | 109.333 | 1.416 | 120 | 175 | 103.916 | 146.6667 | 0.99 | 0.13 | 0.724 |
| 3168921 mmu-miR-125a-3 | 883.3333 | 69.25 | 29.5 | . 833 | 63.833 | 29.5 | 27.7 | . 83333 | 6.416 | 6.416 | 30.75 | . 41667 | 10.41 |  |  |
| ILMN_3169083 mmu-miR-130b* | 73.1666 | 59.16667 | 73.9166 | 3850 | 62.33 | 111.833 | 88.5833 | 84.16666 | 510.9167 | 86.583 | 49.5833 | 56.83333 | 8.23 | 7.25 | . |
| ILMN_3167823 mmu-miR-135a | 265.1667 | 73.91666 | 99.91666 | 98.66666 | 87.66666 | 102.9167 | 121.5 | 106.6667 | 98 | 161.333 | 102.1667 | 158.1667 | 1.00 | 0.2 | 0.920 |
| ILMN_3169111 mmu-miR-138* | 93.5 | 119.25 | 146.6667 | 149.1667 | 150.1667 | 159.4167 | 71.16666 | 76 | 69.25 | 84.41666 | 65.25 | 66.16666 | 1.91 | 0.18 | 0.002 |
| ILMN_3169064 mmu-miR-141* | 34.25 | 148.5833 | 32.41667 | 29.9166 | 31.58333 | 30.75 | 29.91667 | 0.83333 | 216.8333 | 33.66667 | 32.41667 | 35. | 1.47 | 0.68 | 0.77 |
| ILMN_3168509 mmu-miR-142-5p | 109.3333 | 93.16666 | 161.3333 | 124.9167 | 106.6667 | 129.1667 | 149.1667 | 120.5 | 90.41666 | 148.5833 | 108.5833 | 169 | 0. 98 | 0.16 | 0.576 |
| ILMN_3168361 mmu-miR-181a-1* | 29.16667 | 3289.5 | 30 | . 08333 | 1635.083 | 29.75 | 29.5 | 30.58333 | 30 | 29.66667 | 102.9167 | 30.58333 | 21.24 | 17.43 | 0.208 |
| ILMN_3168494 mmu-miR-181d | 75.08334 | . 33334 | . 41666 | 93.5 | 16666 | 112.75 | 193 | 9.1667 | 1.8333 | . 9167 | 132.6667 | 153.75 | 0.61 | 0.06 | 0.006 |
| 3167529 mmu-miR-183 | 65.83334 | 63.91667 | . 58334 | 1.916 | 1667 | 65.2 | 59.833 | 73.5 | 2.58333 | 70 | 58.1666 | . 83334 | 1.25 | 0.32 | 41 |
| MN_3168371 mmu-miR-202-3p |  | 88.5833 | 96.75 | 99.9166 | 98 | 95.1666 | 81.25 | 24.916 | 27.0833 | 49.1667 | 25.583 | 96.75 |  | 0.05 | 0.021 |
| LMN_3167355 mmu-miR-216a | 129.8333 | 87.6666 | 155.5 | 98.9167 | 36.6667 | 7.66 | 372 | 36.666 | .1666 | 115.916 | 73.91666 | 86.58334 | 1.29 | 0.27 | 0.893 |
| ILMN_3168380 mmu-miR-218 | 44.83333 | 42.58333 | 46.83333 | 42.75 | 43.33333 | 45.33333 | 47.58333 | 5985.583 | 40.25 | 51.08333 | 5371.667 | 44.58333 | 0.66 | 0.21 | 0.17 |
| ILMN_3167913 mmu-miR-299* | 89.16666 | 90.16666 | 110.1667 | 112.75 | 113.8333 | 103.9167 | 113.8333 | 138.0833 | 128.1667 | 166.4167 | 153.75 | 129.8333 | 0.75 | 0.03 | 0.002 |
| ILMN_3168116 mmu-miR-301a | 56 | 383.1667 | 77.75 | 90.41666 | 59 | 69.25 | 91.5 | 91.5 | 1943.917 | 83 | 78.25 | 92.08334 | 1.24 | 0.61 | 0.434 |
| ILMN_3169057 mmu-miR-30b* | 60.83333 | 54.33333 | 72.16666 | 64.58334 | 69.75 | 76 | 3532.167 | 80.75 | 773 | 83.58334 | 56.41667 | 59.83333 | 0.68 | 0.22 | 0.272 |
| ILMN_3168944 mmu-miR-335-3p | 32.08333 | 31.41667 | 863.9167 | 38 | 32.41667 | 35.83333 | 39.33333 | 39 | 3074 | 36.16667 | 39.33333 | 39 | 0.78 | 0.11 | 0.358 |
| ILMN_3168937 mmu-miR-341 | 33.5 | 32.58333 | 33.25 | 33.66667 | 2659.417 | 36.33333 | 4209.083 | 38.41667 | 34.41667 | 35 | 35.75 | 37.41667 | 13.02 | 12.27 | 0.782 |
| 3168288 mmu-miR-34b-5p | 103.9167 | 103.9167 | 156.75 | 134 | 112.75 | 145.8333 | 188.8333 | 6873.917 | 2912.75 | 180.9167 | 105 | 138.0833 | 0.58 | 0.1 | 0.212 |
| ILMN_3167215 mmu-mir-370 | 29.66667 | 89.66666 | 26.08333 | 26.41667 | 489.4167 | 27.41667 | 29.33333 | 26.41667 | 27.16667 | 280.1667 | 26.08333 | 26.75 | 4.21 | 2.95 | 0.652 |
| ILMN_3167419 mmu-miR-376a* | 80 | 81.2 | 87.916 | 39.6666 | 81.5833 | 91. | 135.58 | 1614.2 | 88.583 | 98.666 | 113.833 | 112.7 | 0.6 | 0.1 | 0.32 |

Table B2. -Continued

|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


|  | signal | signa | signa | sign | ratio | SEM | p-value |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3167098 mmu-miR-380-3p | 2436 | 35.08333 | 37.41667 | 37.33333 | 661.5 | 34.91667 | 35 | 34.75 | 35.58333 | 43.16667 | 38.16667 | 41.08333 | 15.12 | 11.22 | 0.257 |
| ILMN_3168071 mmu-miR-450b-3p | 84.16666 | 91.5 | 117.6667 | 114.8333 | 105 | 105 | 129.1667 | 150.9167 | 122.5 | 169 | 129.8333 | 134 | 0.75 | 0.05 | 8 |
| MN_3166954 mmu-miR-465a-5p | 3 | 85.58 | 131.4167 | 102.1667 | 99.91666 | 124.9167 | 155.5 | 127.0833 | 94.83334 | 158.1667 | 143.6667 | 117.6667 | 0.92 | 0.12 | 7 |
| ILMN_3169126 mmu-miR-467e* | 93.16666 | 97.5 | 93.16666 | 100.4167 | 96.08334 | 87.66666 | 90.41666 | 101.25 | 105.9167 | 178.0833 | 142.5833 | 214.6667 | 75 | 0.10 | 6 |
| ILMN_3167334 mmu-miR-485* | 52.91667 | 1.25 | 53.1666 | 2.5833 | 56.41667 | 62.33333 | 64.16666 | 57.41667 | 49.58333 | 53.75 | 57.41667 | 62.33333 | 3.04 | 1.75 | 3 |
| ILMN_3167922 m | 30.08333 | 29.66667 | 30. | 33 | 33 | 29.16667 | 428 | 29. | 30.08333 | 29.16667 | 554.5 | 30 | 0.68 | 0.21 | 05 |
| ILMN_3167888 mmu-miR-666-5p | 166.4167 | 120.5 | 135.5833 | 110.1667 | 6666 | 75.08334 | 65.83334 | 5427.667 | 62.91667 | 80.75 | 111.8333 | 113.8333 | . 26 | 0.39 | 0.378 |
| ILMN_3168126 mmu-miR-685 | 08333 | 166 | . 8333 | . 5 | 46.83333 | 51.08333 | 3.83 | 45.3333 | 54.25 | 55.75 | 60.8333 | 4313.5 | 0.64 | 0.20 | 2 |
| ILMN_3166949 m | 29.08333 | 28.83 | 31.16667 | . 83333 | 29. | 979 | 30.58 | 28.83333 | 27.83333 | 30.416 | 109 | 29.33333 | 6.41 | 5.40 | 9 |
| ILMN_3168967 mmu-miR-871 | 145.8333 | 91.16666 | 120.5 | 109.3333 | 153.75 | 6175.917 | 115.9167 | 111.1667 | 107.75 | 143.6667 | 93.16666 | 96.08334 | 11.65 | 10.53 | 0.359 |
| 0 mmu -miR-881 | 69.75 | 71.16666 | 111.1667 | 101 | 102.1667 | 106.6667 | 112.75 | 6623.167 | -80.75 | 101.25 | 64.16666 | 3850 | 0.77 | 0.27 | 0.195 |
| ILMN_3167447 mmu-miR-9 | 29.75 | 379.75 | 30.25 | 46.167 | 29.16667 | 31.83333 | 30.25 | 29.91667 | 29.5 | 31.41667 | 29.08333 | 0.25 | 12.06 | 8.91 | 3 |
| ILMN_3169145 solexa-2564-18 | 43.16667 | 351.4167 | 25 | 599.167 | 54.33333 | 47.58333 | 52.33333 | 57.75 | 96.08334 | 69.25 | 79.08334 | 25 | 5.30 | 3.67 | 4 |
| 8 m | 36.58333 | 33 | 34.25 | 31.83333 | 31.41667 | 32.58333 | 3318.75 | 34.41667 | . 75 | - 33.5 | 33.75 | 33.66667 | 0.80 | 0.16 | 0.362 |
| ILMN_3169059 mmu-miR-101a* | 72.16666 | 60.83333 | 119.25 | 78.25 | 60.83333 | 57.75 | 221.3333 | 44.58333 | 56 | 70.25 | 38.08333 | 56.33333 | 1.26 | 0.25 | 3 |
| ILMN_3169036 | 35.58333 | 33.16667 | 43.5 | 32.41667 | 32.583 | 1614.25 | 50.5 | 56.83333 | 333 | 46.91667 | . 8333 | 5.9167 | 2.84 | 2.22 | 0.406 |
| ILMN_3169045 mmu-miR-1194 | 51.91667 | 62.58333 | 134 | 129.1667 | 121.5 | 136.6667 | 09.7 | 94.8333 | 52.91667 | 130.5833 | 56 | 80 | 38 | 0.37 | 0.959 |
| ILMN_3169050 mmu-miR-1196 | 43.5 | 27.41667 | 08333 | 30.58333 | 2.08333 | 34.66667 | 29.16667 | 31.25 | 33.66667 | 33.83333 | 461.25 | 33 | 0.86 | 0.19 | 4 |
| ILMN_3168942 mmu-miR-125b-3 | 503.4167 | 77.25 | 100.4167 | 90.16666 | 85.58334 | 96.7 | 136.6667 | 8.58 | 87.91666 | 4.91 | 9166 | 111.8333 | 1.33 | 0.47 | 0.495 |
| ILMN_3169062 mmu-miR-127* | 82.33334 | 7.16667 | 49.58333 | 45.08333 | 44.16667 | 1329.583 | 56.91667 | 52.33333 | 43.66 | 59.33333 | 45.33333 | 52.91667 | 5.03 | 4.02 | 0.363 |
| ILMN_3167099 mmu-miR-130b | 115.9 | 127.0833 | 175 | . 8.83 | 109.333 | 134.58 | 89.16666 | . 58 | 2.1 | 0.16 | 93.5 | 89. | 1.22 | 0.15 | 0.352 |
| ILMN_3166936 mmu-miR-135a* | 30.83333 | 29.5 | 3333 | 30.41667 | 12. | 28.08333 | 33 | 31.41 | 0.58 | 29.33333 | 41667 | . 08333 | 23.63 | 22.66 | 0.364 |
| ILMN_3166940 mmu-miR-137 | 128.1667 | 95.16666 | 128.1667 | 6.66 | 122.5 | 108.5833 | 7.75 | 11 | 667 | 146.6667 | 41 | 67 | 0.9 | 0.07 | 1 |
| ILMN_3169066 mmu-miR-150* | 83 | 45.7 | 76 | 7.916 | 916 | 80 | 128.16 | 8.83 | 46.83333 | 53. | 2.58333 | 50.16667 | 1.16 | 0.31 | 0 |
| ILMN_3166999 m | 31.58333 | 3333 | 667 | 83333 | 36.58333 | 667 | . 333 | 33.83333 | 25 | . 0833 | 34.75 | 33 | 0.90 | 0.17 | 0.376 |
| ILMN | 73. | 56.33333 | 8334 | 7.75 | 67.75 | 65.83334 | 883 | 89.16666 | 5.33334 | 333 | 59.417 | 66 | 0.67 | 0.15 | 4 |
| ILMN_3168073 m | 90.16 | 33 | 83334 | 80.7 | 75.0833 | 79. | 166 | 112.7 | 41666 | 99.916 | 139.666 | 06.6667 | 0.81 | 0.09 | 0.093 |
| ILMN_3168837 mmu-miR-190b | 149.1 | 102.9 | 92.08334 | 91.5 | 94.25 | 87.9166 | 0.333 | 78.25 | 76 | 118. | 65.83334 | 64.16666 | 1.3 | 0.18 | 0.141 |
| ILMN_3167801 mmu-miR-200a | 52.33333 | 54.83333 | 7190.917 | 83333 | 40.75 | 33333 | 35.58333 | 34.91667 | 33.5 | 6.83333 | 35.5 | 3.75 | 36.86 | 35.5 | 9 |
| ILMN_3167217 m | 10 | 76 | 94.25 | . 88334 | 83 | 93.16666 | 134 | 1.1667 | 66666 | 16666 | 59 | 5.25 | 0.98 | 0.17 | 0.441 |
| ILM | 47.583 | 38.83333 | 46.5 | . 33333 | 333 | 43.1 | 43.66667 | 40.25 | 46.08333 | 39 | . 6667 | 43.33333 | 0.87 | 0.16 | 2 |
| ILMN_3167091 mmu-miR-205 | 20.25 | 58.5 | 08333 | 58.5 | 666 | 166 | 46.25 | 33333 | 52.5 | 16667 | 1.08333 | . 33333 | 8.54 | 7.46 | 8 |
| ILMN_3168019 m | 30.25 | 33333 | 26.41667 | 33 | 26.08333 | 28.33333 | 6873.917 | 33 | 33 | 3 | 27.7 | 333 | 0.81 | 0.16 | 3 |
| ILMN_3167762 mmu-m | 08 | 544.25 | 46.91 | 1.25 | . 8833 | 8.16 | .83 | 49.7 | . 08 | . 166 | 52.33333 | 1.08333 | 2.6 | 1.66 | 1 |
| ILMN_3167296 mmu-miR-217 | . 83 | 5833 | 118.7 | 8.16 | 10 | 98.66666 | 124.91 | 4.166 | 3.91 | 2.66 | 21 | 9.1667 | 0.87 | . 0 | 0.122 |
| mmu-miR-290-3p | 609 | 42.75 | 47.5 | 44.16 | 83333 | 41.83333 | 45.083 | 45. | 43.83333 | 3 | 44.75 | 33 | 23.31 | 2.37 | 4 |
| ILMN_3169056 mmu-miR-29b* | 32.41667 | 57. | 32.16667 | 32.75 | 33.5 | 31.33333 | 34.25 | 33.66667 | 65.83334 | 2.41667 | 32.41667 | 1408.083 | 0.87 | 0. 23 | 0.360 |
| ILMN_3167235 mmu-miR-302c* | 72.58334 | 50.5 | 62.91667 | 33333 | 57.75 | 63.5 | 361. | 62.33333 | -78.25 | 83334 | 61.08333 | 68.5 | 0.77 | 0.12 | 5 |
| ILMN_3167931 mmu-n | 66.16666 | 9.083 | 66.8333 | . 916 | 61. | 67.5833 | 0.83333 | 77.75 | 70.25 | 82 | 68.16666 | 83 | 1.14 | 0.24 | 9 |
| ILMN_3168931 mmu-miR-323-5p | 73.5 | 410.75 | 53.5 | 33333 | 3333 | 33333 | . 3333 | . 83333 | . 83333 | 8333 | 52.91667 | 08333 | . 36 | 1.2 | 0.316 |
| m | . 83333 | 38.41667 | 83 | 44.75 | 41.83333 | 43.33333 | 51.91667 | 48.16667 | 45.33333 | 16 | 1154.917 | 33 | 0.77 | 0.15 | 4 |
| ILMN_3166955 mmu-miR-369-5p | 53.75 | 45.66667 | 53.75 | . 41667 | 56.91667 | 59.58333 | 75.083 | 67.58334 | 54.83333 | 63 | 59.16667 | 2006.667 | 0.7 | 0.15 | 0.349 |
| ILMN_3167597 mmu-miR-374* | 8.41667 | 33 | 16667 | 833 | 38.41667 | 47.58333 | 45.333 | . 66 | . 58333 | 248 | 32.58333 | 25 | 0.90 | 0.17 | 378 |
| ILMN_3168438 m | 79.75 | 67.75 | 88.58334 | 73.16666 | 69.25 | 77.25 | 84.83334 | 98.66666 | 74.33334 | 33 | 263.1667 | 66 | 0.82 | 0.13 | 8 |
| ILMN_3169116 mmu-miR-376c* | 2983.667 | 2.33333 | 74.33334 | 65.25 | 73.5 | 89.66666 | 96.7 | 109.3333 | 94.25 | 33.75 | 57.75 | 61.08333 | 6.13 | 4.95 | 0.364 |
| ILMN_3168477 m | 52.16 | 666 | 52.5 | 52.33333 | 46.25 | 50.08333 | 51.08333 | 54.25 | 265.1667 | 76.58334 | 70.33334 | 66 | 0.83 | 0.23 | 2 |
| ILMN_3168945 mmu-miR-384-5p | 77.75 | 82 | 80 | 83 | 80.75 | 81.58334 | 89.66666 | 02.9167 | 66 | 127.0833 | 98 | 150.1667 | 0.77 |  | O |
| ILMN_3168473 mmu-miR-412:9.1 | 29.33333 | 29.75 | 8.33333 | 28.5 | .58 | 30.4 | 31.583 | 32.41667 | 30.41667 | 30 | 135.5833 | 28.83333 | 0.83 | 0.12 | 0 |
| ILMN_3168987 m | 58.16667 | 56 | 2436 | 49.58333 | 44.83333 | 46.91667 | . 08 | 4166 | 51.91667 | 54.25 | 50.58333 | 51.91667 | 8.63 | 7.66 | 5 |
| ILMN_3169010 mmu-miR-449b | 46.83333 | 3.83333 | 8. 16667 | 48.58333 | 47.25 | 3361.167 | 63.5 | 59 | 48.83333 | 5.91667 | 54.33333 | 54.33333 | 11.01 | 10.17 | 0.371 |
| ILMN_3168990 m | 45.08333 | 43.33333 | 62.58333 | 48.83333 | 39.58333 | 73.91666 | 58 | 40.7 | 52.16667 | 5.33333 | 45. | 4209.083 | 0.85 | 0.17 | . 364 |
| ILMN_3168992 mmu-miR-466e-5 | 79.08334 | 81.58334 | 105 | 103.9167 | 111.1667 | 138.0833 | 4.5833 | 3.6667 | 33 | 155 | 58334 | 99.91666 | 0.88 | 0.15 | 1 |
| ILMN_3167338 mmu-miR-467a*, | 33.25 | 1368.417 | . 41667 | 31.58333 | 31.33333 | 35.58333 | 32.75 | 32.58333 | 34.91667 | 31.33333 | 46.5 | 30.75 | 7.79 | 6.84 | 0.368 |
| ILMN_3168998 m | 46.91667 | 101.25 | 50.16667 | 833 | 49.75 | 55.75 | 2824.917 | 9.1666 | 47.58333 | . 83333 | 1.833 | 9.5 | 0.98 | 0.23 | 2 |
| ILMN_3168437 m | 39 | 41 | 58333 | 723 | 3.66667 | 53.5 | . 33333 | 53 | 91667 | 52.5 | 55.75 | . 58333 | 3.02 | 2.1 | 3 |
| ILMN_3167114 m | 333 | . 08 | 73.16666 | 63.91667 | 54.8333 | 58.5 | 68.1666 | 72 | 59.33333 | 70.7 | 66.16666 | 67.75 | 13.25 | 12.35 | 7 |
| ILMN_3168526 mmu-miR-501-5p | 27.16667 | 27.83333 | 29.7 | 26.75 | 333 | 28.5 | 26.416 | 30.0833 | 979.5 | 31.58333 | 28.5 | 28. | 0.80 | 0.16 | 0 |
| ILMN_3167147 mmu-miR-503 | 127.0833 | 102.166 | 4486.667 | 122.5 | 105.9167 | 97.5 | 101.25 | 119.25 | 115.9167 | 165.5833 | 9.3333 | 66666 | 7.25 | 6.29 | 8 |
| ILMN_3169002 mmu-miR-509-3p | 56. | 49.75 | 59.333 | 56.91667 | 53.5 | 66.16666 | 90.16666 | 95.1666 | 89.16666 | 93 | 134 | 84.83334 | 0.6 | 0.05 | 5 |
| ILMN_3168953 mmu-miR-540-5p | 2754.917 | 8.3333 | 31.7 | . 416 | .91 | 26.4166 | 28. | 3333 | 26.7 | . 1666 | 27.41667 | 27.16667 | 17.0 | 15.9 | 0.361 |
| ILMN_3169019 mmu-miR-598 | 205.1667 | 117.6667 | 102.166 | 111.1667 | 89.16666 | 85.58334 | 9.83333 | 88.41666 | 84.83334 | 135.5833 | 82.33334 | 79.75 | 1.49 | 0.39 | 0.269 |
| ILMN_3169026 mmu-miR-669d | 62.91 | 54.25 | 61.7 | 59.16667 | 49.91667 | 3.75 | 302.583 | 61.08333 | 2.33333 | 59 | 68.5 | 70.75 | 0.73 | 0.1 | 0.359 |
| ILMN_3169032 mmu-miR-669f | 36.33333 |  | 36.33333 | 35.08333 | 36.33333 | 39.08333 | 39 | 37.41667 | 123.6667 | 40.75 | 38 | 38.41667 | 0.8 | 0.1 | 0.297 |
| ILMN_3169034 mmu-miR-669h-5p | 60.16667 | 52.16667 | 72.58334 | 64.16666 | 65.83334 | 72.16666 | 379.75 | 82 | 61.08333 | 73.16666 | 62.33333 | 69.25 | 0.83 | 0.15 | 0.332 |
| ILMN_3169031 mmu-miR-669j | 1.5 | 1.666 | 1666 | . 583 | 90.4166 | . 08334 | .1666 | 105.9167 | 2.3333 | 138.083 | 95.16666 | 93.5 | 1.41 | 0.5 | 0.496 |
| ILMN_3169024 mmu-miR-669k | 55.25 | 47.58333 | 58.16667 | 48.16667 | 51.25 | 49.58333 | 56.33333 | 628.6667 | 43.33333 | 49.91667 | 46.08333 | 46.83333 | 0.92 | 0.18 | 2 |
| ILMN_3167810 mmu-miR-670 | 100.4167 | 98 | 108.5833 | 108.5833 | 123.666 | 146.666 | 166.416 | 185.3333 | 142.5833 | 187.16 | 87.9166 | 5.16666 | 0.90 | 0.1 | 0.277 |
| ILMN_3168960 mmu-miR-673-3p | 51.25 | 46.91667 | 59.83333 | 50.5 | 48.33333 | 44.58333 | 44.75 | 47.58333 | 3318.75 | 47.58333 | 44.16667 | 41.66667 | 0.9 | 0.1 | 0.366 |
| ILMN_3167012 mmu-miR-675-5p | 1390.25 | 47.58333 | 63.5 | 59.33333 | 68.5 | 66.83334 | 66.16666 | 79.08334 | 70.75 | 50.58333 | 50. | 54.83333 | 4.38 | 3.33 | 0.363 |
| ILMN_3167632 mmu-miR-680 | 34.91667 | 32 | 320.5 | 33.833 | 34.4166 | 35 | 36.58333 | 38 | 36.16667 | 37.83333 | 31.58333 | 33.83333 | 2.28 | 1.3 | 0.378 |
| ILMN_3168521 mmu-miR-686 | 81.58334 | 5.33334 | 89.66666 | 75.08334 | 66.83334 | 5.33334 | 80 | 71.16666 | 66.16666 | 88.58334 | 4209.083 | 88.41666 | 0.8 | 0.1 | 0.364 |
| ILMN_3168002 mmu-miR-688 | 27.83333 | 27. | 27.83333 | 27.41667 | 28.5 | 26.75 | 5493.5 | 27.16667 | 29.66667 | 27.83333 | 26.41667 | 26.08333 | 0.84 | 0.17 | 0.363 |
| ILMN_3168037 mmu-miR-702 | 130.5833 | 2365.333 | 115.9167 | 93.16666 | 82.33334 | 84.16666 | 75.33334 | 90.41666 | 77.75 | 87.66666 | 70.75 | 82 | 5.44 | 4.15 | 0.338 |
| ILMN_3167181 mmu-miR-711 | 150.1667 | 84.41666 | 125.5833 | 119.25 | 97.5 | 93.5 | 80.75 | 97.5 | 100.4167 | 114.1667 | 94.25 | 122.5 | 1.1 | . 1 | 0.502 |
| ILMN_3168148 mmu-miR-713 | 50.16667 | 45.33333 | 49.91667 | 4647.833 | 46.08333 | 50.58333 | 52.5 | 54.33333 | 48.16667 | 56 | 48.58333 | 51.25 | 14.63 | 13.67 | 0.365 |
| ILMN_3168502 mmu-miR-718 | 134.5833 | 110.1667 | 178.0833 | 125.5833 | 118.75 | 129.8333 | 175 | 155.5 | 114.1667 | 151.9167 | 91.5 | 131.4167 | 1.02 | 0.14 | 0.838 |
| ILMN_3168403 mmu-miR-721 | 114.8333 | 109.3333 | 107.75 | 106.6667 | 110.1667 | 109.3333 | 815.3333 | 101 | 97.5 | 108.5833 | 100.4167 | 128.1667 | 0.88 | 0.1 | 0.369 |
| ILMN_3167851 mmu-miR-741 | 67.58334 | 52.5 | 5532 | 56.33333 | 56.83333 | 51.91667 | 54.83333 | 59.83333 | 44.16667 | 44.83333 | 39.08333 | 37.83333 | 21.91 | 20.67 | 0.359 |
| ILMN_3169119 mmu-miR-744* | 339.1667 | 69.75 | 90.16666 | 81.25 | 79.08334 | 73.5 | 72.58334 | 73.91666 | 63.5 | 82.33334 | 64.58334 | 74.33334 | 1.71 | 0.60 | 0.300 |
| ILMN_3168977 mmu-miR-876-5p | 54.83333 | 44.75 | 45.08333 | 1828.917 | 43.5 | 44.75 | 43.83333 | 41.83333 | 42.25 | 46.08333 | 45.08333 | 49.75 | 7.49 | 6.44 | 0.360 |
| ILMN_3169135 solexa-173-2522 | 62.33333 | 1070.583 | 50.5 | 46.08333 | 45.75 | 45.66667 | 50.08333 | 46.83333 | 47.83333 | 45.08333 | 42.33333 | 46.08333 | 4.71 | 3.63 | 0.354 |
| ILMN_3169141 | 124.9167 | 111.1667 | 141 | 134.5833 | 119.25 | 153.75 | 180.9167 | 150.1667 | 119.25 | 139.6667 | 88.58334 | 88.58334 | 1.11 | 0.16 | 0.881 |

## APPENDIX C

miRNA expression profiles in response to OS and LS in HUVEC

Table C1. miRNA expression profiles in HUVEC exposed to OS or LS for 1 day.

|  | LS1 | LS2 | LS3 | OS1 | OS2 | OS3 | OS/LS |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Reporter Name | Signal | Signal | Signal | Signal | Signal | Signal | ratio | SEM | p -value |
| hsa-miR-663 | 1,517 | 2,341 | 1,816 | 5,999 | 7,515 | 9,565 | 4.14 | 0.60 | $4.72 \mathrm{E}-03$ |
| hsa-miR-151-3p | 2,274 | 2,122 | 2,035 | 1,595 | 1,430 | 1,403 | 0.69 | 0.01 | $5.36 \mathrm{E}-03$ |
| hsa-miR-320a | 7,461 | 8,651 | 6,688 | 3,882 | 4,032 | 3,265 | 0.49 | 0.02 | $5.54 \mathrm{E}-03$ |
| hsa-miR-320c | 6,884 | 8,587 | 6,438 | 3,606 | 3,696 | 3,033 | 0.48 | 0.03 | $6.02 \mathrm{E}-03$ |
| hsa-miR-320d | 5,010 | 6,266 | 4,530 | 2,482 | 2,478 | 2,014 | 0.45 | 0.03 | $6.31 \mathrm{E}-03$ |
| hsa-miR-1275 | 818 | 973 | 668 | 1,798 | 1,524 | 1,415 | 1.96 | 0.20 | $1.46 \mathrm{E}-02$ |
| hsa-miR-320b | 5,505 | 7,860 | 5,729 | 2,698 | 2,864 | 2,771 | 0.45 | 0.04 | $1.89 \mathrm{E}-02$ |
| hsa-miR-191 | 2,982 | 3,037 | 3,175 | 2,755 | 2,553 | 2,766 | 0.88 | 0.02 | 2.67E-02 |
| hsa-miR-1469 | 2,437 | 4,343 | 4,032 | 7,278 | 11,308 | 15,663 | 3.16 | 0.38 | 2.87E-02 |
| hsa-miR-638 | 2,255 | 4,588 | 3,310 | 7,095 | 11,709 | 16,326 | 3.54 | 0.72 | 3.07E-02 |
| hsa-miR-195 | 4,623 | 3,895 | 3,875 | 3,037 | 3,081 | 2,402 | 0.69 | 0.05 | $3.20 \mathrm{E}-02$ |
| hsa-miR-149* | 93 | 221 | 135 | 307 | 1,043 | 1,216 | 5.66 | 1.71 | $4.64 \mathrm{E}-02$ |
| hsa-miR-27b | 3,660 | 5,044 | 5,259 | 2,111 | 2,086 | 3,358 | 0.54 | 0.07 | $4.82 \mathrm{E}-02$ |
| hsa-miR-15b | 5,555 | 3,835 | 4,768 | 8,904 | 7,629 | 6,082 | 1.62 | 0.21 | 5.63E-02 |
| hsa-miR-31 | 5,173 | 5,108 | 4,660 | 3,765 | 2,792 | 3,587 | 0.68 | 0.07 | $5.69 \mathrm{E}-02$ |
| hsa-miR-27a | 7,423 | 10,343 | 9,756 | 4,803 | 4,445 | 7,317 | 0.61 | 0.09 | $6.69 \mathrm{E}-02$ |
| hsa-miR-187* | 32 | 65 | 42 | 113 | 482 | 509 | 7.73 | 2.50 | $6.93 \mathrm{E}-02$ |
| hsa-miR-20b | 1,545 | 1,211 | 1,511 | 1,923 | 1,648 | 2,078 | 1.33 | 0.04 | 7.23E-02 |
| hsa-miR-1915 | 434 | 1,578 | 921 | 1,706 | 4,768 | 6,013 | 4.49 | 1.05 | $7.42 \mathrm{E}-02$ |
| hsa-miR-24 | 6,731 | 8,185 | 8,268 | 6,016 | 5,770 | 6,768 | 0.81 | 0.05 | $7.48 \mathrm{E}-02$ |
| hsa-miR-22 | 897 | 1,584 | 1,293 | 605 | 540 | 921 | 0.58 | 0.12 | 8.08E-02 |
| hsa-miR-1308 | 1,824 | 1,128 | 1,299 | 2,948 | 2,369 | 1,749 | 1.69 | 0.22 | $9.29 \mathrm{E}-02$ |
| hsa-miR-425 | 501 | 474 | 515 | 439 | 346 | 410 | 0.80 | 0.04 | $9.45 \mathrm{E}-02$ |
| hsa-miR-494 | 280 | 350 | 419 | 601 | 404 | 640 | 1.61 | 0.29 | $9.66 \mathrm{E}-02$ |
| hsa-miR-130b | 664 | 608 | 701 | 558 | 377 | 465 | 0.71 | 0.07 | $9.86 \mathrm{E}-02$ |
| hsa-miR-139-5p | 487 | 406 | 343 | 113 | 123 | 103 | 0.28 | 0.02 | 7.63E-03 |
| hsa-miR-192 | 61 | 86 | 62 | 29 | 17 | 33 | 0.40 | 0.10 | $2.26 \mathrm{E}-02$ |
| hsa-miR-125a-3p | 62 | 61 | 58 | 40 | 29 | 32 | 0.56 | 0.05 | 2.32E-02 |
| hsa-miR-424* | 73 | 80 | 86 | 107 | 109 | 105 | 1.34 | 0.07 | $2.64 \mathrm{E}-02$ |
| hsa-miR-194 | 33 | 53 | 39 | 14 | 23 | 21 | 0.46 | 0.04 | $3.33 \mathrm{E}-02$ |
| hsa-miR-421 | 72 | 52 | 73 | 163 | 114 | 104 | 1.96 | 0.27 | $3.42 \mathrm{E}-02$ |
| hsa-miR-939 | 21 | 32 | 11 | 48 | 89 | 64 | 3.59 | 1.09 | $4.28 \mathrm{E}-02$ |
| hsa-miR-1231 | 41 | 37 | 22 | 58 | 177 | 138 | 4.14 | 1.44 | $4.95 \mathrm{E}-02$ |
| hsa-miR-625 | 288 | 170 | 170 | 128 | 66 | 86 | 0.45 | 0.03 | $5.20 \mathrm{E}-02$ |
| hsa-miR-671-5p | 33 | 30 | 24 | 51 | 37 | 57 | 1.73 | 0.35 | 5.23E-02 |
| hsa-miR-379* | 24 | 20 | 14 | 33 | 40 | 29 | 1.82 | 0.23 | $5.72 \mathrm{E}-02$ |
| hsa-miR-217 | 289 | 230 | 251 | 360 | 327 | 300 | 1.29 | 0.07 | $6.03 \mathrm{E}-02$ |
| hsa-miR-197 | 229 | 207 | 195 | 117 | 159 | 105 | 0.61 | 0.08 | $6.14 \mathrm{E}-02$ |
| hsa-miR-181a* | 17 | 15 | 21 | 25 | 23 | 33 | 1.53 | 0.05 | $6.75 \mathrm{E}-02$ |
| hsa-miR-933 | 16 | 23 | 17 | 34 | 23 | 34 | 1.69 | 0.35 | 7.19E-02 |
| hsa-miR-484 | 156 | 210 | 160 | 115 | 89 | 139 | 0.68 | 0.13 | $7.20 \mathrm{E}-02$ |
| hsa-miR-193a-3p | 22 | 29 | 33 | 18 | 15 | 22 | 0.66 | 0.09 | 7.33E-02 |
| hsa-miR-1908 | 23 | 29 | 19 | 46 | 112 | 188 | 5.25 | 2.41 | $7.92 \mathrm{E}-02$ |
| hsa-miR-22* | 60 | 88 | 78 | 42 | 56 | 55 | 0.68 | 0.02 | $8.00 \mathrm{E}-02$ |
| hsa-miR-498 | 14 | 15 | 16 | 22 | 41 | 52 | 2.47 | 0.49 | $8.38 \mathrm{E}-02$ |
| hsa-miR-140-3p | 142 | 168 | 220 | 105 | 117 | 117 | 0.66 | 0.06 | $8.39 \mathrm{E}-02$ |
| hsa-miR-411* | 29 | 29 | 52 | 71 | 82 | 59 | 2.10 | 0.50 | $8.90 \mathrm{E}-02$ |
| hsa-miR-25* | 21 | 19 | 10 | 49 | 31 | 26 | 2.17 | 0.29 | $8.99 \mathrm{E}-02$ |
| hsa-miR-532-5p | 84 | 102 | 102 | 81 | 60 | 80 | 0.78 | 0.11 | $1.06 \mathrm{E}-01$ |
| hsa-miR-20a | 5,077 | 4,091 | 4,671 | 6,449 | 4,934 | 6,296 | 1.27 | 0.04 | $1.07 \mathrm{E}-01$ |
| hsa-miR-487a | 20 | 19 | 22 | 36 | 23 | 35 | 1.53 | 0.15 | 1.10E-01 |
| hsa-miR-720 | 394 | 535 | 317 | 287 | 229 | 268 | 0.67 | 0.13 | 1.17E-01 |
| hsa-miR-28-3p | 109 | 146 | 112 | 97 | 103 | 77 | 0.76 | 0.07 | $1.21 \mathrm{E}-01$ |
| hsa-miR-1268 | 113 | 195 | 102 | 227 | 262 | 198 | 1.76 | 0.21 | $1.27 \mathrm{E}-01$ |
| hsa-miR-574-3p | 507 | 659 | 395 | 428 | 288 | 329 | 0.71 | 0.13 | $1.28 \mathrm{E}-01$ |
| hsa-miR-127-3p | 361 | 462 | 522 | 303 | 354 | 372 | 0.77 | 0.04 | $1.29 \mathrm{E}-01$ |
| hsa-miR-125a-5p | 8,505 | 9,514 | 9,904 | 6,236 | 8,524 | 7,065 | 0.78 | 0.06 | $1.31 \mathrm{E}-01$ |
| hsa-miR-185 | 936 | 663 | 765 | 659 | 647 | 522 | 0.79 | 0.09 | $1.36 \mathrm{E}-01$ |
| hsa-miR-150* | 13 | 32 | 23 | 37 | 66 | 31 | 2.09 | 0.43 | $1.40 \mathrm{E}-01$ |
| hsa-miR-181a-2* | 33 | 39 | 58 | 66 | 50 | 83 | 1.58 | 0.23 | $1.44 \mathrm{E}-01$ |
| hsa-miR-337-3p | 21 | 32 | 29 | 30 | 57 | 41 | 1.56 | 0.12 | $1.45 \mathrm{E}-01$ |
| hsa-miR-16 | 7,076 | 6,516 | 8,955 | 9,117 | 9,376 | 9,288 | 1.25 | 0.12 | $1.50 \mathrm{E}-01$ |
| hsa-miR-106a | 3,874 | 3,525 | 3,904 | 5,342 | 3,924 | 5,524 | 1.30 | 0.10 | $1.51 \mathrm{E}-01$ |
| hsa-miR-99b | 2,275 | 3,013 | 2,928 | 2,116 | 1,983 | 2,508 | 0.81 | 0.08 | $1.54 \mathrm{E}-01$ |
| hsa-miR-654-3p | 18 | 22 | 41 | 44 | 34 | 77 | 1.96 | 0.28 | $1.56 \mathrm{E}-01$ |
| hsa-miR-1826 | 17,885 | 17,103 | 14,214 | 11,560 | 15,947 | 10,539 | 0.77 | 0.08 | $1.59 \mathrm{E}-01$ |
| hsa-miR-766 | 70 | 41 | 48 | 47 | 32 | 32 | 0.70 | 0.04 | $1.75 \mathrm{E}-01$ |
| hsa-miR-1301 | 44 | 49 | 29 | 31 | 27 | 24 | 0.71 | 0.08 | $1.76 \mathrm{E}-01$ |
| hsa-miR-25 | 3,803 | 3,156 | 3,885 | 4,033 | 4,158 | 4,200 | 1.15 | 0.08 | $1.77 \mathrm{E}-01$ |
| hsa-miR-602 | 34 | 32 | 12 | 37 | 67 | 39 | 2.13 | 0.60 | $1.80 \mathrm{E}-01$ |
| hsa-miR-17 | 4,117 | 3,506 | 4,002 | 5,266 | 3,978 | 5,682 | 1.28 | 0.08 | $1.81 \mathrm{E}-01$ |
| hsa-miR-299-5p | 113 | 99 | 131 | 127 | 138 | 142 | 1.20 | 0.10 | $1.81 \mathrm{E}-01$ |
| hsa-miR-361-3p | 32 | 61 | 41 | 33 | 28 | 27 | 0.71 | 0.17 | $1.90 \mathrm{E}-01$ |
| hsa-miR-18b | 122 | 92 | 117 | 179 | 116 | 138 | 1.30 | 0.09 | $1.93 \mathrm{E}-01$ |
| hsa-miR-328 | 20 | 34 | 24 | 18 | 18 | 20 | 0.75 | 0.11 | 1.95E-01 |
| hsa-miR-500* | 30 | 40 | 42 | 33 | 23 | 31 | 0.81 | 0.15 | $1.96 \mathrm{E}-01$ |
| hsa-miR-23a* | 161 | 196 | 124 | 116 | 119 | 131 | 0.79 | 0.14 | 2.00E-01 |
| hsa-miR-30d | 795 | 949 | 877 | 711 | 556 | 824 | 0.81 | 0.11 | $2.00 \mathrm{E}-01$ |
| hsa-miR-874 | 27 | 22 | 21 | 33 | 23 | 36 | 1.31 | 0.19 | 2.02E-01 |
| hsa-miR-146a | 52 | 87 | 59 | 111 | 86 | 73 | 1.45 | 0.35 | $2.08 \mathrm{E}-01$ |
| hsa-miR-450a | 8 | 17 | 20 | 17 | 33 | 23 | 1.77 | 0.31 | 2.11E-01 |


|  | LS1 | LS2 | LS3 | OS1 | OS2 | OS3 | OS/LS |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Reporter Name | Signal | Signal | Signal | Signal | Signal | Signal | ratio | SEM | p -value |
| hsa-miR-222 | 9,269 | 16,795 | 11,386 | 7,589 | 7,071 | 11,501 | 0.75 | 0.17 | $2.25 \mathrm{E}-01$ |
| hsa-miR-30a | 1,074 | 1,500 | 1,338 | 860 | 567 | 1,253 | 0.70 | 0.17 | $2.33 \mathrm{E}-01$ |
| hsa-miR-24-2* | 50 | 79 | 64 | 56 | 38 | 53 | 0.81 | 0.19 | $2.35 \mathrm{E}-01$ |
| hsa-miR-125b | 10,627 | 12,660 | 12,225 | 9,950 | 11,006 | 11,236 | 0.91 | 0.02 | $2.35 \mathrm{E}-01$ |
| hsa-miR-126* | 117 | 103 | 54 | 162 | 216 | 89 | 1.71 | 0.21 | $2.39 \mathrm{E}-01$ |
| hsa-miR-224 | 641 | 825 | 649 | 679 | 597 | 524 | 0.86 | 0.10 | $2.47 \mathrm{E}-01$ |
| hsa-miR-130b* | 27 | 20 | 29 | 28 | 30 | 32 | 1.22 | 0.13 | $2.51 \mathrm{E}-01$ |
| hsa-miR-214 | 3,201 | 2,231 | 2,152 | 2,427 | 1,910 | 1,499 | 0.77 | 0.05 | $2.55 \mathrm{E}-01$ |
| hsa-miR-769-5p | 39 | 21 | 29 | 22 | 17 | 26 | 0.76 | 0.10 | $2.57 \mathrm{E}-01$ |
| hsa-miR-218 | 60 | 42 | 53 | 47 | 46 | 28 | 0.80 | 0.16 | $2.63 \mathrm{E}-01$ |
| hsa-miR-148b | 34 | 57 | 65 | 56 | 68 | 86 | 1.39 | 0.13 | $2.66 \mathrm{E}-01$ |
| hsa-miR-365 | 188 | 191 | 245 | 199 | 276 | 288 | 1.23 | 0.12 | $2.66 \mathrm{E}-01$ |
| hsa-miR-150 | 46 | 100 | 50 | 58 | 35 | 33 | 0.76 | 0.27 | $2.75 \mathrm{E}-01$ |
| hsa-miR-378 | 25 | 48 | 28 | 26 | 21 | 24 | 0.78 | 0.18 | $2.79 \mathrm{E}-01$ |
| hsa-miR-1281 | 67 | 61 | 47 | 56 | 87 | 77 | 1.30 | 0.24 | $2.79 \mathrm{E}-01$ |
| hsa-miR-886-3p | 157 | 284 | 32 | 61 | 65 | 17 | 0.38 | 0.09 | $2.81 \mathrm{E}-01$ |
| hsa-miR-30a* | 391 | 277 | 325 | 315 | 286 | 216 | 0.83 | 0.11 | $2.81 \mathrm{E}-01$ |
| hsa-miR-454 | 229 | 129 | 187 | 304 | 290 | 169 | 1.49 | 0.40 | $2.82 \mathrm{E}-01$ |
| hsa-miR-34a | 564 | 715 | 819 | 499 | 579 | 667 | 0.84 | 0.02 | $2.83 \mathrm{E}-01$ |
| hsa-miR-744* | 36 | 23 | 26 | 28 | 13 | 21 | 0.72 | 0.08 | 2.83E-01 |
| hsa-miR-29c | 285 | 383 | 381 | 159 | 216 | 376 | 0.70 | 0.14 | $2.86 \mathrm{E}-01$ |
| hsa-miR-628-3p | 24 | 23 | 25 | 45 | 34 | 22 | 1.39 | 0.28 | $2.92 \mathrm{E}-01$ |
| hsa-miR-765 | 38 | 27 | 32 | 30 | 27 | 16 | 0.77 | 0.14 | $2.96 \mathrm{E}-01$ |
| hsa-miR-374b | 402 | 228 | 279 | 426 | 904 | 302 | 2.04 | 0.97 | $2.99 \mathrm{E}-01$ |
| hsa-miR-503 | 203 | 170 | 205 | 181 | 186 | 156 | 0.91 | 0.10 | $3.01 \mathrm{E}-01$ |
| hsa-miR-29b | 38 | 61 | 67 | 28 | 30 | 61 | 0.71 | 0.12 | $3.02 \mathrm{E}-01$ |
| hsa-miR-27b* | 46 | 33 | 47 | 39 | 37 | 30 | 0.86 | 0.14 | $3.02 \mathrm{E}-01$ |
| hsa-miR-23a | 15,614 | 23,487 | 19,827 | 16,137 | 13,293 | 18,962 | 0.85 | 0.14 | $3.05 \mathrm{E}-01$ |
| hsa-miR-629* | 32 | 29 | 28 | 35 | 18 | 16 | 0.75 | 0.16 | $3.08 \mathrm{E}-01$ |
| hsa-miR-23b | 13,685 | 20,676 | 18,711 | 13,222 | 11,963 | 17,791 | 0.83 | 0.13 | $3.08 \mathrm{E}-01$ |
| hsa-miR-625* | 96 | 41 | 51 | 61 | 32 | 29 | 0.66 | 0.07 | 3.17E-01 |
| hsa-miR-497 | 62 | 93 | 120 | 75 | 68 | 61 | 0.82 | 0.21 | $3.19 \mathrm{E}-01$ |
| hsa-miR-936 | 58 | 73 | 19 | 52 | 12 | 15 | 0.61 | 0.23 | $3.22 \mathrm{E}-01$ |
| hsa-miR-425* | 25 | 29 | 36 | 28 | 24 | 26 | 0.88 | 0.12 | $3.32 \mathrm{E}-01$ |
| hsa-miR-487b | 257 | 274 | 319 | 345 | 275 | 325 | 1.12 | 0.11 | $3.35 \mathrm{E}-01$ |
| hsa-miR-10a* | 25 | 30 | 33 | 39 | 30 | 32 | 1.16 | 0.19 | $3.40 \mathrm{E}-01$ |
| hsa-miR-30e | 75 | 187 | 151 | 60 | 64 | 146 | 0.70 | 0.19 | $3.43 \mathrm{E}-01$ |
| hsa-miR-193a-5p | 1,798 | 1,144 | 1,101 | 1,068 | 1,303 | 795 | 0.82 | 0.16 | $3.44 \mathrm{E}-01$ |
| hsa-miR-181c | 77 | 115 | 67 | 80 | 62 | 63 | 0.84 | 0.15 | $3.50 \mathrm{E}-01$ |
| hsa-miR-629 | 137 | 93 | 99 | 115 | 84 | 72 | 0.82 | 0.05 | $3.51 \mathrm{E}-01$ |
| hsa-miR-7 | 212 | 56 | 58 | 257 | 266 | 73 | 2.41 | 1.17 | $3.60 \mathrm{E}-01$ |
| hsa-miR-181a | 1,390 | 1,971 | 2,092 | 1,400 | 1,424 | 1,778 | 0.86 | 0.08 | $3.61 \mathrm{E}-01$ |
| hsa-miR-93 | 970 | 815 | 997 | 1,120 | 881 | 1,104 | 1.11 | 0.02 | $3.61 \mathrm{E}-01$ |
| hsa-miR-18a | 379 | 235 | 326 | 473 | 306 | 369 | 1.23 | 0.05 | $3.65 \mathrm{E}-01$ |
| hsa-miR-199a-3p | 1,678 | 1,266 | 1,092 | 1,435 | 970 | 913 | 0.82 | 0.03 | $3.67 \mathrm{E}-01$ |
| hsa-miR-29b-1* | 59 | 44 | 24 | 71 | 61 | 40 | 1.40 | 0.12 | $3.68 \mathrm{E}-01$ |
| hsa-let-7i | 19,285 | 16,065 | 16,742 | 18,472 | 14,269 | 14,366 | 0.90 | 0.03 | $3.77 \mathrm{E}-01$ |
| hsa-miR-1246 | 12,056 | 10,558 | 6,525 | 18,662 | 14,974 | 7,816 | 1.39 | 0.10 | $3.89 \mathrm{E}-01$ |
| hsa-miR-221 | 6,172 | 10,480 | 8,676 | 5,501 | 5,937 | 9,005 | 0.83 | 0.14 | $3.96 \mathrm{E}-01$ |
| hsa-miR-1260 | 41 | 25 | 45 | 27 | 29 | 32 | 0.85 | 0.16 | $3.96 \mathrm{E}-01$ |
| hsa-miR-744 | 55 | 52 | 66 | 63 | 56 | 70 | 1.10 | 0.03 | $4.14 \mathrm{E}-01$ |
| hsa-miR-151-5p | 7,912 | 6,436 | 6,962 | 6,727 | 7,223 | 5,539 | 0.92 | 0.10 | $4.24 \mathrm{E}-01$ |
| hsa-let-7f | 19,347 | 14,963 | 17,414 | 20,380 | 19,884 | 16,336 | 1.11 | 0.12 | $4.40 \mathrm{E}-01$ |
| hsa-miR-1180 | 104 | 86 | 83 | 89 | 90 | 71 | 0.92 | 0.07 | $4.48 \mathrm{E}-01$ |
| hsa-miR-566 | 17 | 29 | 11 | 37 | 17 | 21 | 1.57 | 0.49 | $4.49 \mathrm{E}-01$ |
| hsa-miR-106b* | 35 | 45 | 32 | 53 | 43 | 34 | 1.17 | 0.17 | $4.50 \mathrm{E}-01$ |
| hsa-miR-654-5p | 21 | 26 | 23 | 41 | 23 | 23 | 1.27 | 0.32 | $4.62 \mathrm{E}-01$ |
| hsa-miR-424 | 122 | 250 | 344 | 222 | 252 | 493 | 1.42 | 0.23 | $4.72 \mathrm{E}-01$ |
| hsa-miR-30e* | 76 | 77 | 89 | 62 | 92 | 62 | 0.91 | 0.15 | $4.74 \mathrm{E}-01$ |
| hsa-miR-376a | 44 | 86 | 78 | 73 | 64 | 137 | 1.38 | 0.32 | $4.76 \mathrm{E}-01$ |
| hsa-miR-21 | 29,666 | 26,154 | 27,238 | 32,577 | 27,914 | 27,329 | 1.06 | 0.03 | $4.77 \mathrm{E}-01$ |
| hsa-miR-126 | 28,962 | 29,268 | 33,123 | 35,613 | 30,945 | 30,022 | 1.06 | 0.09 | $4.80 \mathrm{E}-01$ |
| hsa-miR-28-5p | 850 | 727 | 676 | 656 | 830 | 555 | 0.91 | 0.12 | $4.82 \mathrm{E}-01$ |
| hsa-miR-199a-5p | 33 | 68 | 56 | 71 | 44 | 77 | 1.39 | 0.43 | $4.85 \mathrm{E}-01$ |
| hsa-miR-130a | 155 | 153 | 236 | 150 | 145 | 175 | 0.88 | 0.07 | $4.87 \mathrm{E}-01$ |
| hsa-miR-1280 | 1,525 | 1,282 | 775 | 1,481 | 1,354 | 1,257 | 1.22 | 0.20 | $5.01 \mathrm{E}-01$ |
| hsa-miR-370 | 22 | 44 | 11 | 43 | 27 | 26 | 1.66 | 0.54 | $5.04 \mathrm{E}-01$ |
| hsa-miR-886-5p | 277 | 272 | 140 | 222 | 209 | 116 | 0.80 | 0.02 | $5.17 \mathrm{E}-01$ |
| hsa-miR-543 | 7 | 18 | 15 | 15 | 10 | 37 | 1.70 | 0.58 | $5.18 \mathrm{E}-01$ |
| hsa-miR-411 | 25 | 47 | 59 | 55 | 45 | 52 | 1.33 | 0.41 | $5.21 \mathrm{E}-01$ |
| hsa-miR-1237 | 29 | 25 | 13 | 35 | 21 | 23 | 1.30 | 0.29 | $5.22 \mathrm{E}-01$ |
| hsa-let-7d* | 47 | 79 | 65 | 55 | 53 | 58 | 0.91 | 0.15 | $5.35 \mathrm{E}-01$ |
| hsa-miR-584 | 1,168 | 592 | 534 | 873 | 564 | 357 | 0.79 | 0.08 | $5.38 \mathrm{E}-01$ |
| hsa-miR-323-3p | 16 | 36 | 31 | 33 | 35 | 28 | 1.33 | 0.41 | $5.39 \mathrm{E}-01$ |
| hsa-miR-361-5p | 1,697 | 1,360 | 1,664 | 1,802 | 2,076 | 1,373 | 1.14 | 0.21 | $5.40 \mathrm{E}-01$ |
| hsa-miR-92b | 5,776 | 4,289 | 3,864 | 6,101 | 5,564 | 4,019 | 1.13 | 0.08 | $5.48 \mathrm{E}-01$ |
| hsa-miR-885-5p | 33 | 8 | 15 | 13 | 8 | 15 | 0.79 | 0.20 | $5.57 \mathrm{E}-01$ |
| hsa-let-7a | 21,479 | 16,868 | 19,903 | 23,795 | 21,538 | 17,607 | 1.09 | 0.11 | $5.58 \mathrm{E}-01$ |
| hsa-miR-339-3p | 20 | 35 | 19 | 36 | 25 | 23 | 1.24 | 0.31 | $5.78 \mathrm{E}-01$ |
| hsa-miR-92a | 13,469 | 10,821 | 10,233 | 13,768 | 12,135 | 10,900 | 1.07 | 0.03 | $5.80 \mathrm{E}-01$ |
| hsa-miR-433 | 51 | 63 | 69 | 52 | 61 | 57 | 0.95 | 0.06 | $5.89 \mathrm{E}-01$ |
| hsa-miR-134 | 290 | 215 | 242 | 305 | 282 | 221 | 1.09 | 0.12 | $6.06 \mathrm{E}-01$ |

Table C1.-Continued

|  | LS1 | LS2 | LS3 | OS1 | OS2 | OS3 | OS/LS |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Reporter Name | Signal | Signal | Signal | Signal | Signal | Signal | ratio | SEM | p -value |
| hsa-miR-34a* | 12 | 33 | 20 | 16 | 14 | 21 | 0.93 | 0.27 | $6.15 \mathrm{E}-01$ |
| hsa-miR-26a | 11,092 | 10,103 | 10,212 | 10,494 | 11,419 | 10,274 | 1.03 | 0.05 | $6.16 \mathrm{E}-01$ |
| hsa-miR-409-3p | 91 | 88 | 69 | 171 | 152 | 46 | 1.42 | 0.38 | $6.16 \mathrm{E}-01$ |
| hsa-miR-1228 | 40 | 17 | 20 | 30 | 31 | 24 | 1.26 | 0.31 | $6.18 \mathrm{E}-01$ |
| hsa-miR-107 | 2,060 | 2,286 | 2,733 | 2,216 | 2,042 | 2,428 | 0.95 | 0.06 | $6.22 \mathrm{E}-01$ |
| hsa-miR-377 | 14 | 36 | 14 | 37 | 13 | 29 | 1.69 | 0.67 | $6.23 \mathrm{E}-01$ |
| hsa-miR-15a | 383 | 265 | 532 | 361 | 449 | 489 | 1.18 | 0.25 | $6.24 \mathrm{E}-01$ |
| hsa-miR-193b* | 28 | 33 | 35 | 32 | 35 | 23 | 0.95 | 0.14 | $6.29 \mathrm{E}-01$ |
| hsa-miR-362-5p | 28 | 49 | 55 | 36 | 45 | 34 | 0.93 | 0.20 | $6.51 \mathrm{E}-01$ |
| hsa-miR-16-2* | 20 | 15 | 28 | 23 | 15 | 42 | 1.20 | 0.16 | $6.56 \mathrm{E}-01$ |
| hsa-miR-574-5p | 1,762 | 751 | 857 | 1,668 | 1,390 | 805 | 1.25 | 0.30 | $6.61 \mathrm{E}-01$ |
| hsa-miR-19b | 620 | 1,413 | 1,169 | 1,100 | 840 | 1,791 | 1.30 | 0.36 | $6.63 \mathrm{E}-01$ |
| hsa-miR-1238 | 36 | 31 | 13 | 33 | 21 | 12 | 0.82 | 0.08 | $6.69 \mathrm{E}-01$ |
| hsa-miR-98 | 1,195 | 558 | 615 | 958 | 1,517 | 497 | 1.44 | 0.64 | $6.71 \mathrm{E}-01$ |
| hsa-miR-181b | 1,991 | 2,679 | 3,100 | 1,363 | 2,439 | 3,257 | 0.88 | 0.11 | $6.72 \mathrm{E}-01$ |
| hsa-miR-100 | 5,797 | 7,017 | 7,061 | 6,739 | 5,899 | 8,652 | 1.08 | 0.12 | $6.74 \mathrm{E}-01$ |
| hsa-let-7d | 17,011 | 12,680 | 15,595 | 16,862 | 17,131 | 13,616 | 1.07 | 0.14 | $6.79 \mathrm{E}-01$ |
| hsa-let-7b | 12,004 | 7,659 | 9,605 | 9,634 | 10,684 | 6,566 | 0.96 | 0.22 | $6.81 \mathrm{E}-01$ |
| hsa-miR-132 | 183 | 92 | 116 | 120 | 116 | 105 | 0.94 | 0.17 | $6.82 \mathrm{E}-01$ |
| hsa-miR-1290 | 28 | 42 | 20 | 38 | 49 | 20 | 1.18 | 0.11 | $6.85 \mathrm{E}-01$ |
| hsa-miR-329 | 62 | 87 | 75 | 85 | 58 | 103 | 1.14 | 0.24 | $6.99 \mathrm{E}-01$ |
| hsa-miR-101 | 22 | 39 | 33 | 37 | 40 | 25 | 1.15 | 0.27 | $7.10 \mathrm{E}-01$ |
| hsa-miR-106b | 918 | 741 | 822 | 1,012 | 737 | 858 | 1.05 | 0.03 | 7.12E-01 |
| hsa-miR-30b | 926 | 1,166 | 1,788 | 940 | 1,525 | 1,892 | 1.13 | 0.09 | $7.14 \mathrm{E}-01$ |
| hsa-miR-940 | 72 | 55 | 28 | 80 | 58 | 36 | 1.16 | 0.07 | $7.19 \mathrm{E}-01$ |
| hsa-miR-1249 | 39 | 34 | 20 | 32 | 32 | 19 | 0.91 | 0.04 | $7.32 \mathrm{E}-01$ |
| hsa-miR-923 | 5,326 | 5,726 | 7,457 | 10,697 | 4,445 | 6,586 | 1.22 | 0.39 | $7.34 \mathrm{E}-01$ |
| hsa-miR-181d | 38 | 74 | 324 | 49 | 122 | 398 | 1.39 | 0.13 | $7.41 \mathrm{E}-01$ |
| hsa-miR-345 | 47 | 86 | 87 | 69 | 80 | 79 | 1.11 | 0.18 | $7.52 \mathrm{E}-01$ |
| hsa-miR-381 | 15 | 38 | 31 | 22 | 19 | 30 | 0.98 | 0.29 | $7.53 \mathrm{E}-01$ |
| hsa-miR-19a | 16 | 26 | 30 | 18 | 24 | 40 | 1.12 | 0.13 | $7.54 \mathrm{E}-01$ |
| hsa-miR-423-5p | 2,948 | 1,979 | 2,443 | 2,397 | 2,913 | 1,661 | 0.99 | 0.24 | $7.55 \mathrm{E}-01$ |
| hsa-miR-10a | 2,297 | 1,751 | 1,775 | 1,908 | 2,309 | 1,362 | 0.97 | 0.17 | $7.66 \mathrm{E}-01$ |
| hsa-miR-663b | 16 | 33 | 10 | 19 | 12 | 16 | 1.06 | 0.38 | $7.74 \mathrm{E}-01$ |
| hsa-miR-128 | 952 | 727 | 860 | 936 | 820 | 700 | 0.97 | 0.09 | $7.85 \mathrm{E}-01$ |
| hsa-miR-505* | 167 | 111 | 165 | 149 | 180 | 93 | 1.02 | 0.31 | $7.90 \mathrm{E}-01$ |
| hsa-miR-376c | 218 | 392 | 313 | 251 | 177 | 456 | 1.02 | 0.30 | $7.93 \mathrm{E}-01$ |
| hsa-miR-660 | 44 | 39 | 37 | 51 | 31 | 35 | 0.97 | 0.10 | $7.95 \mathrm{E}-01$ |
| hsa-miR-26b | 2,180 | 1,465 | 1,817 | 1,513 | 2,448 | 1,298 | 1.03 | 0.32 | $7.96 \mathrm{E}-01$ |
| hsa-miR-485-3p | 92 | 89 | 112 | 76 | 111 | 125 | 1.06 | 0.13 | $8.20 \mathrm{E}-01$ |
| hsa-miR-455-3p | 535 | 476 | 704 | 634 | 528 | 591 | 1.04 | 0.10 | $8.25 \mathrm{E}-01$ |
| hsa-miR-483-5p | 80 | 77 | 101 | 76 | 123 | 56 | 1.03 | 0.30 | $8.31 \mathrm{E}-01$ |
| hsa-miR-155 | 11,663 | 7,176 | 7,277 | 10,337 | 10,064 | 6,762 | 1.07 | 0.17 | $8.34 \mathrm{E}-01$ |
| hsa-miR-379 | 538 | 285 | 342 | 528 | 425 | 279 | 1.10 | 0.20 | $8.38 \mathrm{E}-01$ |
| hsa-miR-216a | 202 | 262 | 393 | 240 | 227 | 466 | 1.08 | 0.11 | $8.39 \mathrm{E}-01$ |
| hsa-miR-505 | 24 | 56 | 84 | 30 | 32 | 87 | 0.95 | 0.19 | $8.53 \mathrm{E}-01$ |
| hsa-miR-29a | 6,250 | 6,847 | 6,780 | 6,484 | 4,895 | 8,303 | 0.99 | 0.15 | $8.56 \mathrm{E}-01$ |
| hsa-miR-154 | 36 | 51 | 59 | 39 | 47 | 53 | 0.97 | 0.06 | $8.58 \mathrm{E}-01$ |
| hsa-miR-431 | 19 | 38 | 31 | 24 | 27 | 30 | 0.99 | 0.17 | $8.60 \mathrm{E}-01$ |
| hsa-miR-30c-2* | 29 | 39 | 35 | 36 | 39 | 30 | 1.04 | 0.12 | $8.67 \mathrm{E}-01$ |
| hsa-miR-452 | 22 | 29 | 25 | 35 | 24 | 21 | 1.08 | 0.26 | $8.71 \mathrm{E}-01$ |
| hsa-miR-502-3p | 18 | 40 | 25 | 32 | 23 | 29 | 1.17 | 0.36 | $8.75 \mathrm{E}-01$ |
| hsa-miR-10b | 5,136 | 4,093 | 4,494 | 4,442 | 6,069 | 3,790 | 1.06 | 0.21 | 8.80E-01 |
| hsa-miR-342-3p | 133 | 210 | 299 | 143 | 230 | 297 | 1.05 | 0.03 | 8.82E-01 |
| hsa-miR-30c | 2,717 | 3,063 | 3,990 | 2,662 | 3,464 | 3,869 | 1.03 | 0.05 | $8.90 \mathrm{E}-01$ |
| hsa-let-7c | 17,157 | 12,264 | 14,951 | 16,100 | 16,261 | 12,720 | 1.04 | 0.15 | 8.90E-01 |
| hsa-miR-324-3p | 23 | 38 | 19 | 25 | 26 | 23 | 1.00 | 0.16 | $8.94 \mathrm{E}-01$ |
| hsa-miR-877 | 257 | 116 | 168 | 183 | 236 | 100 | 1.12 | 0.46 | $9.00 \mathrm{E}-01$ |
| hsa-let-7e | 13,546 | 9,652 | 12,884 | 11,007 | 14,448 | 9,993 | 1.03 | 0.23 | $9.07 \mathrm{E}-01$ |
| hsa-miR-342-5p | 27 | 41 | 34 | 45 | 47 | 20 | 1.13 | 0.31 | $9.08 \mathrm{E}-01$ |
| hsa-miR-296-5p | 36 | 26 | 23 | 31 | 32 | 20 | 0.99 | 0.13 | $9.10 \mathrm{E}-01$ |
| hsa-let-7g | 11,998 | 8,480 | 10,620 | 10,724 | 10,519 | 9,184 | 1.00 | 0.12 | 9.12E-01 |
| hsa-miR-1307 | 70 | 95 | 100 | 72 | 91 | 106 | 1.02 | 0.03 | 9.13E-01 |
| hsa-miR-382 | 459 | 248 | 278 | 384 | 379 | 238 | 1.07 | 0.23 | $9.15 \mathrm{E}-01$ |
| hsa-miR-1304 | 32 | 18 | 25 | 23 | 28 | 22 | 1.04 | 0.25 | $9.29 \mathrm{E}-01$ |
| hsa-miR-1229 | 41 | 13 | 18 | 22 | 24 | 16 | 1.10 | 0.39 | $9.29 \mathrm{E}-01$ |
| hsa-miR-7-1* | 28 | 22 | 23 | 42 | 12 | 26 | 1.05 | 0.27 | $9.38 \mathrm{E}-01$ |
| hsa-miR-331-3p | 69 | 114 | 113 | 86 | 86 | 114 | 1.01 | 0.14 | $9.42 \mathrm{E}-01$ |
| hsa-miR-186 | 32 | 95 | 85 | 47 | 44 | 137 | 1.18 | 0.36 | $9.54 \mathrm{E}-01$ |
| hsa-miR-221* | 33 | 56 | 36 | 43 | 42 | 35 | 1.01 | 0.16 | $9.58 \mathrm{E}-01$ |
| hsa-miR-103 | 2,330 | 2,417 | 3,067 | 2,567 | 2,402 | 2,846 | 1.01 | 0.05 | $9.61 \mathrm{E}-01$ |
| hsa-miR-1234 | 43 | 22 | 19 | 30 | 27 | 24 | 1.04 | 0.17 | $9.68 \mathrm{E}-01$ |
| hsa-miR-324-5p | 55 | 90 | 98 | 76 | 64 | 96 | 1.03 | 0.20 | $9.71 \mathrm{E}-01$ |
| hsa-miR-495 | 321 | 441 | 431 | 434 | 358 | 388 | 1.02 | 0.17 | $9.75 \mathrm{E}-01$ |
| hsa-miR-1913 | 33 | 26 | 22 | 37 | 28 | 17 | 1.00 | 0.11 | $9.75 \mathrm{E}-01$ |
| hsa-miR-137 | 63 | 58 | 84 | 52 | 86 | 68 | 1.04 | 0.22 | $9.77 \mathrm{E}-01$ |
| hsa-miR-337-5p | 19 | 28 | 34 | 24 | 25 | 30 | 1.01 | 0.13 | $9.81 \mathrm{E}-01$ |
| hsa-miR-99a | 1,330 | 2,381 | 2,249 | 1,516 | 1,828 | 2,615 | 1.02 | 0.13 | $9.83 \mathrm{E}-01$ |
| hsa-miR-432 | 595 | 314 | 357 | 469 | 589 | 246 | 1.12 | 0.38 | $9.85 \mathrm{E}-01$ |
| hsa-miR-206 | 13 | 17 | 100 | 12 | 16 | 115 | 1.02 | 0.07 | $9.86 \mathrm{E}-01$ |
| hsa-miR-152 | 74 | 71 | 67 | 81 | 79 | 54 | 1.01 | 0.10 | 9.90E-01 |

